

Basic Concept Training SCIA Engineer 17

All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database or retrieval system or published, in any form or in any way, electronically, mechanically, by print, photo print, microfilm or any other means without prior written permission from the publisher. SCIA is not responsible for any direct or indirect damage because of imperfections in the documentation and/or the software.

© Copyright 2017 SCIA nv. All rights reserved.

Table of contents

Table of contents General Information	
Modules SCIA Engineer Support service Website SCIA Engineer – General environment Part 1 – Input of Structural entities	5 5 5
Example 1: Frame Example 2: Frame Example 3a: Steel hall Example 3b: Steel hall Example 4: Purlins Example 5: Bridge Example 6: Carrousel Extra example: 3D Hall Part 2 – Loads, Load combinations, Calculation and Results	10 11 13 17 19 20 22
Example 7: Beam with 3 spans Example 8: Concrete frame Example 9a: Beam on 2 supports Part 3 – Engineering report and Images	27 29
Example 9b: Beam on 2 supports Example 10: Bearing frame Part 4 – Introduction to Steel and Concrete code checks	34
Example 11: Steel hall Example 12: Concrete frame Part 5 – Plates, Walls and Shells	41
Example 13: Rectangular plate Example 14: Slab on elastic foundation (subsoil) Example 15: Slab with ribs Example 16: Prefab wall Example 17: Balcony Example 17: Balcony Example 18: Tank Example 19: Swimming pool Example 20: Cooling tower Example 20: Cooling tower Example 21: Steel hall with concrete plate Example 22: Detailed study of a column base Annexes	48 51 53 54 55 55 57 59 62 64 3
Annex 1: Connection of entities Annex 2: Conventions for the results on 2D members Annex 3: Results in mesh elements and mesh nodes → 4 Locations Annex 4: Free loads Annex 5: Overview of the icons in windows & toolbars Annex 6: Introduction to openBIM	69 73 75 77

General Information

Modules

Most of the functionalities presented in this course are available in SCIA Engineer Concept Edition.

Other functionalities are not included in this edition and require specific modules. When a section of this course deals with one of these modules, additional information is given.

SCIA Engineer Support service

You can contact the SCIA Engineer support service

- by e-mail

Send an e-mail to support@scia.net with a description of the problem and the concerning *.esa file, and mention the number of the SCIA Engineer version you are currently working with.

- by telephone
 - From Belgium : +32 13 550990

From the Netherlands: +31 26 3201230

- via the SCIA Support website

http://www.scia.net/en/company/news/scia-customer-portal

Website

www.scia.net

- Link to eLearning http://elearning.scia.net/
- Link to manuals & tutorials
 http://www.scia.net > Support & Downloads > Free Downloads > input your e-mail address > SCIA
 Engineer > SCIA Engineer Manuals & Tutorials
- Link to the latest SCIA Engineer patch http://update.scia.net/

SCIA Engineer – General environment

Setup > Options Help > Contents > Reference guide File > New > Project data

	Data	ons Protection	 Material		_
Scia	Data		Matchar		,
Engineer	Name:	Example 1	Concrete		
			Steel	V	
	Part:	Basic training	Material	S 235 🔹	
			Timber		
	Description:	Frame	Masonry		
			 Other		
	Author:	Scia Engineer	Aluminium		
		<u>.</u>			
	Date:	28.05.2015			
			 Code		٦
	Structure:		National Code:		
	Frame XZ		EC - EN	<u> </u>	
	Project Level:	Model:	National annex:		
	Advanced	One	EC-EN		

Overview of the menus

Main menu & Properties menu + Actions

Main ×	¢
Project	1
Line grid and storeys	
BIM toolbox	
Structure Structure	I
Load	I
🗄 📲 Load cases, Combinations	I
E Design groups	I
🗄 🔤 Calculation, mesh	I
Steel	I
🕂 🗄 Design Forms Checks	I
Engineering report	I
🕀 🕍 Drawing Tools	I
Eibraries	I
tools	
1	1

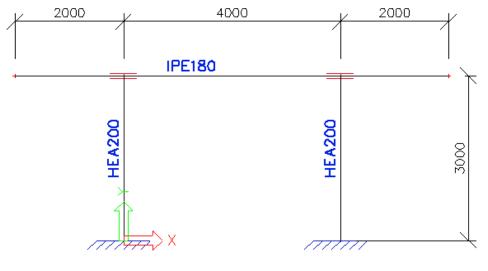
Properties				×
Member (1)	- 14	7	1	7
B		¢		6
Name	B1			*
Туре	column (100)		-	
Analysis model	Standard		+	=
CrossSection	CS1 - HEA300	*		-
Alpha	0		+	
Member system-lin	Centre		+	
ez [mm]	0			
LCS	standard		+	
FEM type	standard		+	
Buckling and relativ	Default	+		
Actions				
Buckling data		:	>>>	
Graphical input of syste	em length	:	>>>	•
Table edit geometry			>>>	

Overview of the toolbars

Activity	▼ ×	Basic					•	×
	BAR	🗅 🖻		2 🗉	Esa1			•
View		👻 🗙						
\$ \$ \$ \$ \$ \$ <u>\$</u> A A A A A A A	. ╆ 💡 👘 🛗	C 🕖						
Geometry manipulations							👻 X	
To 🗗 🖧 🛍 🛋 🖞 To To To To	1월 1월 241 🕀 🛎	🌢 🕰 /	🖣 🕼 📭		24 24	脂前	คลี่ เชื่อ	
								1
Modelling Tools 🛛 👻 🗙	Project					- x		
🔐 🚰 👰 👰 🐡 📌 🛛 🖼	0m 🥩 😗 Iy) fi 🔞	🛱 🎮 l e	96	12 🖬	🗊 🗋		
Selection of object	•	×	Tools	▼ × .	Scales			•
😰 🛱 🖗 🕲 🛛 🕰 🖗 関	🕈 I 🔡 🌌 🕅 6	7	۵ 🕰 🗈	7 [] ? [1 🌲	4	1 🚔 🏅	5 1
nand line								

Command line

00 0 🚣 🔤 🕮 🦉 🖉 🖪	
Command line	
<u> </u>	
Command >	


REMARK: If a menu or toolbar has been (accidentally) removed from the project, it can be re-activated via the View menu > Toolbars.

Part 1 – Input of Structural entities

Example 1: Frame

1_Input of geometry

*Project data: Frame XZ – Steel S235

*Adding cross sections which will be used in the project

Libraries > Cross sections > New cross section, or 'Project' toolbar

Adding materials which will be used in the project

Libraries > Materials, or 'Project' toolbar

*Input of members: Structure menu > 1D Member Define nodes via

-Command line Absolute co-ordinates 0 0 of 0;0 Relative co-ordinates @

-Raster points Dot grid, on 'Tools' toolbar

Line grid, on 'Tools' toolbar 🕮

Snap to the raster points by means of Cursor snap settings, on Command line toolbar

After input, you can adapt the <u>geometry</u> of a selected entity via Actions > Table edit geometry & adapt the <u>properties</u> via Properties menu

*Input of supports: Structure menu > Model data > Support Select one or more existing nodes

REMARK: Instructions are being shown on the Command line!

2_Display on screen

*Manipulations					
-'View' toolbar	🖔 🗞 🐇 🖕 🗛 ୠ ୠ ୠ 😭 🕈 🖆 🖆 🗇				
-Scroll bars, at	the right bottom of the work area				
-Hotkeys	SHIFT + right mouse button > Move				
CTRL + right mouse button > Rotate					
	SHIFT + CTRL + right mouse button > Zoom				

	*Selection of entities	
		: 📴 🛱 🎒 関 📴 😭 😫 🕪 💷 💠 🔜 😼 🕼 🐼 🚽
	-'Selection of object' toolbar	
		Frame from left to right > All entities which are located entirely in the frame,
		are selected
		Frame from right to left > All entities which are located entirely in the frame
		or are intersected by the frame, are selected
	-At the top of the Properties	
	S	Select elements by property 🔽
		Select elements by more properties
	-Command line > type 'SEL'	' commando + name of entity (e.g. SEL K1)
	*Deselection of entities -Deselect all, using ESC key -Deselect one entity at a tim	y ne, via CTRL key + click on entity with left mouse button
	*Display of structure	
		toolbar: Rendering of structure 🖉 🕖, Display of supports 🖾, Display
		ORC ORC
	of names of nodes & beams	
	-Detailed, via Command line mouse click in screen	e toolbar: Set view parameters for all/for selection 💷 💷, or via right
3_A	Actions AFTER input of	geometry
	Two actions always have to	be performed after input of the geometry to avoid problems during

Two actions always have to be performed after input of the geometry, to avoid problems during calculation:

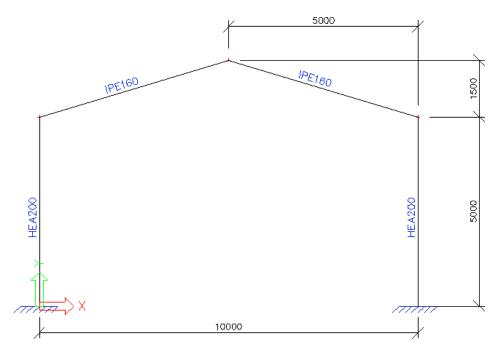
*Structure menu > <u>Check structure data</u>, or 'Project' toolbar ¹¹ Duplicate nodes and beams, and incorrect entities are detected and removed. Also the additional data are being checked.

*Structure menu > Model data > <u>Connect members/nodes</u>, or 'Geometry manipulations' toolbar Nodes which coincide with beams, and edges (of 2D members) which intersect with beams, are connected to the concerned beams. See also Annex 1.

Attention: Previous to this action everything has to be deselected, only then the entire structure is connected. In the other case, SCIA Engineer looks for connections only in the selection.

In this example the end nodes of the columns are connected to the beam, see the double red lines

around the connecting nodes. To show/hide these lines on the screen, see Command line toolbar


*OR: It is possible to execute both actions at the same time > In the window Connection of structural entities, select the option Check structure data

	■ Align structural entities to planes (moving nodes)	
	Align	
	Geometrical tolerance	
	Min. distance of two nodes, node to curve [m]	0,001
	Max. distance of node to 2D member plane [m]	0,000
	Connect (generate linked nodes, intersections, intersections)	ern
	Connect	
T service (or)	Connect 1D members as ribs	
1	Connect 1D members with rigid arms	
	Max. length of rigid arm [m]	0,100
	Create new linked node for master node	
	Check structure data	
	Check (merge duplicate nodes, erase invalid entities)	
- 🖻 - 🖻 -		OK Cancel

Example 2: Frame

1_Input of geometry

*Project data: Frame XZ – Steel S235

*Input of members

-Left part of frame, via Structure menu > 1D Member; afterwards Mirror option via 'Geometry

manipulations' toolbar ¹⁰ -Complete frame, via Structure menu > Advanced Input > Catalogue blocks; choose for Frame 2D

*Input of supports -Structure menu > Model data > Support

-Fast input of supports (and hinges) via Command line toolbar

2_Manipulations

To move nodes:

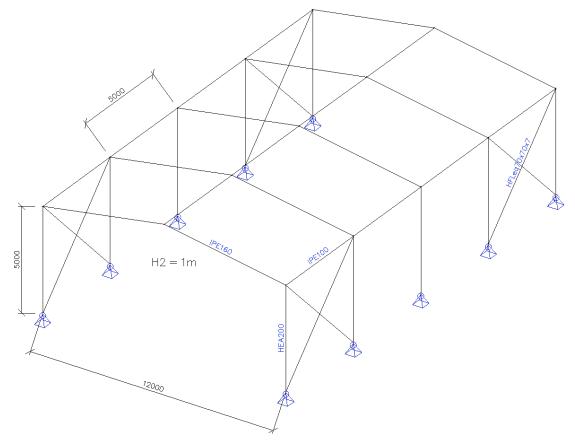
First select node, afterwards

-Drag node with left mouse button

-Change co-ordinates of the node in the Properties menu

-Move node, via 'Geometry manipulations' toolbar *m*, or via right mouse click in the screen

3_Actions after input


*Check structure data	· 🔛

F 💽

*Connect members/nodes 🖆 (Attention: connect the entire structure!)

Example 3a: Steel hall

1_Input of geometry

*Input of first frame: analogous to Example 2

*Copy the first frame: via 'Geometry manipulations' toolbar

-Copy : input afterwards manually the connecting beams

-Multicopy : generate the connecting beams automatically Attention: connecting beams are generated from all of the <u>selected</u> nodes. 33

Number	of copies 4	÷	Connect selected nodes vith new beams
🔽 Inser	t the very last copy	1	Copy additional data
Distance			How to define the distance ?
Define d	listance by cursor		between two copies
x	0,000	m	C from original to the last copy
у	5	m	How to define the rotation ?
z	0,000	m	 between two copies from original to the last copy
Rotation	1		- Rotation around
rx	0,00	deg	current UCS
ry	0,00	deg	O distance vector
17	0,00	deg	

*Input of supports

Select first the nodes at the bottom of the columns, afterwards

-Filter Properties window \boxed{V} > Selection of all nodes with co-ordinates Z = 0

-Select by working plane, see 'Selection of object' toolbar \mathbb{E} > Selection of all elements which lie exactly in the Active working plane, see \mathbb{P} at the bottom of the Command line

2_Actions after input

*Check structure data

*Connect members/nodes 🚈 (Attention: connect the entire structure!)

3_Structural model

*Main menu > Project > Functionality: Structural model

-Activate Rendering, see Command line toolbar

-Generate structural model, see 'View' toolbar

-Alter priorities via Setup > Beam types (structural)

*Alternating between Structural model and Analysis model via Select view parameters for all Structure > Model type, or via View > Set view parameters

Structural model = Presentation model, but also necessary for the input of steel connections, anchoring of reinforcement, ...

Attention: modifications in the Structural model (e.g. eccentricities) are not taken into account for the calculation!

4_Display of screen

-Set view parameters for all/for selection, via right mouse click in screen

-Fast adjustment of view parameters, see Command line toolbar

For example: Check if the correct cross-sections have been inputted Set view parameters for all > Structure > Style & colour = Colour by cross-section

-Alter colours, fonts, background colour etc. via Setup > Colours/Lines > Palette settings; the settings for Screen, Document and Graphic output are done via separate tabs

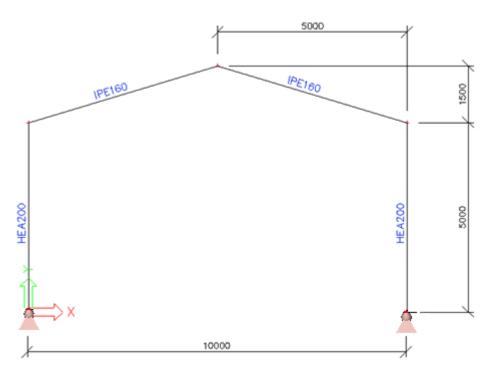
5_Activity & Visibility

*Define layers, via 'Project' toolbar

-Current used activity: defines if the layer is visible or not

-Structural model only: when set to 'yes' the layer is NOT taken into account for the calculation

6_Saving a file

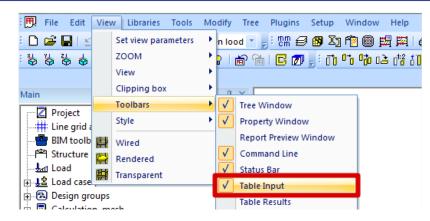

Select the option 'Clean mesh, results of calculation' if you want to remove these parts from the saved file. The size of the file is in this way considerably reduced, but when the file is reopened in SCIA Engineer it is necessary to calculate again to view the results.

lsk to save			
Clean mesh, results of pictures	f calculation and 2D	FEM cross-	section
Save changes to Esa2?			
	Yes	No	Cancel

Example 3b: Steel hall

1_Input of frame geometry

*Project data: Frame XYZ – Steel S235 – Purlins IPE 100 – H2 = 1,5m

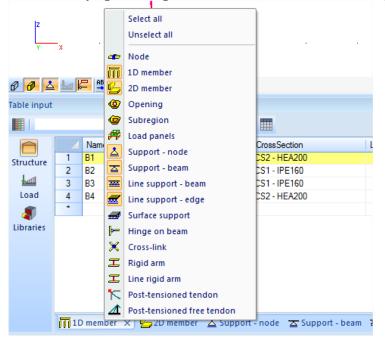


*Input of first frame: analogous to Example 2

2_Table input

Table input is a functionality introduced since SCIA Engineer 2011. It enables the user to numerically introduce or edit project data. Numerical data can also be handled simply by a Copy/Paste from SCIA Engineer into Excel and vice versa.

To be able to use the Table input, you have to display it through View > Toolbars > Table input



The menu is displayed under the command line but can be dropped into any other position like this is already possible for other menu windows (main menu, properties menu...). You can open the different tables using the tabs that are at the bottom of the Table editor. You can choose the data table that has to be displayed among the available tabs.

			· •									
		Name	Туре	Beg. n	End n	CrossSection	Length [m]	Layer	LCS Rotation [deg]	Member system-li	ey [mm]	ez [mm
ructure	1	B1	column (100)	N1	N2	CS2 - HEA200	5,000	Kolom	0,00	Centre	0	
	2	B2	beam (80)	N2	N3	CS1 - IPE160	6,083	Dak	0,00	Centre	0	
	3	B3	beam (80)	N4	N3	CS1 - IPE160	6,083	Dak	0,00	Centre	0	
Load	4	B4	column (100)	N5	N4	CS2 - HEA200	5,000	Kolom	0,00	Centre	0	
and the second s												

In the above table you can see the inputted frame with its properties in a table. These properties can be edited in this table. The user can also input new elements via this table input. This will be done for the input of the rest of the structure.

Notice the three possibilities that you can edit in the table input (Structure, Load, Libraries). At the bottom you can find for instance in the structure section: 1D member, support node,... you can expand these items by right clicking on the bottom section of the table input window.

3_Multicopy with table input

Table input				_	_	
	:5:0		4	÷ 🗸		📄 🖬 🍸 🏛
		Name	Туре	Beg. n	End n	CrossSection
Structure	1	B1	column (100)	N1	N2	CS2 - HEA200
	2	B2	beam (80)	N2	N3	CS1 - IPE160
	3	B3	beam (80)	N4	N3	CS1 - IPE160
Load	4	B4	column (100)	N5	N4	CS2 - HEA200

Libraries

- Select the 4 beams by selecting the 4 rows of the 1D-members.
- Fill in the text box of the 1D-members the following relative coordinate: @ 0 ; 5 ; 0
- And set the repetition on 4 (= 4 copies)
- Start the multicopy by clicking on

4_Inputting structure elements with table input

The nodal supports of the columns need to be added.

- Right mouse click at the bottom of the table input window and add the nodes tab.
- Order the Z-coordinate in an ascending order by clicking on Coord Z (arrow facing upwards).

		Name	Coord X [m]	Coord Y [m]	Coord Z	
Structure	1	N1	0,000	0,000	0,000	
Structure	2	N5	12,000	0,000	0,000	B4
au an	3	N8	12,000	5,000	0,000	B6
Load	4	N10	0,000	5,000	0,000	B7
	5	N13	12,000	10,000	0,000	B10
Libraries	6	N15	0,000	10,000	0,000	B11
cionanes	7	N18	12,000	15,000	0,000	B14
	8	N20	0,000	15,000	0,000	B15
	9	N23	12,000	20,000	0,000	B18
	10	N25 -	0.000	20.000	0.000	B19
	11	N2	Сору		5,000	B1; B2
	12	N4	Paste			B3; B4
	10	NIC	Conversion	to editbox		DE. D7
	🖝 N	ode ×	Copy value	to europa	Suppor	t - node
Command li	ne		Search			
₽ 3		_	Copy value	to filter		

Copy the names of the nodes with a Z=0m and paste it in MS Excel

- Also copy two support nodes into MS Excel

		Name	Туре	Constraint	X	Y	Z	Rx	Ry	Rz	Node
Structure	1	Sn1	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N5
	2	Sn2	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N1
<u>ta</u> aili	•						Сору				
Load							Paste				
3							Copy value to ed	itbox			
Libraries							copy value to ca	neb ox			
							Search				
							Copy value to filt	ter			
						_					
	▲										
	🖛 No	ode 📊	1D member 🛛 💪	2D member 🔼	Support - node 🗙	🚡 Support - bea	im 🔤 Line suppor	rt - beam	🚾 Line su	pport - edg	e

- Now try to compose a table with 10 identical nodal supports.

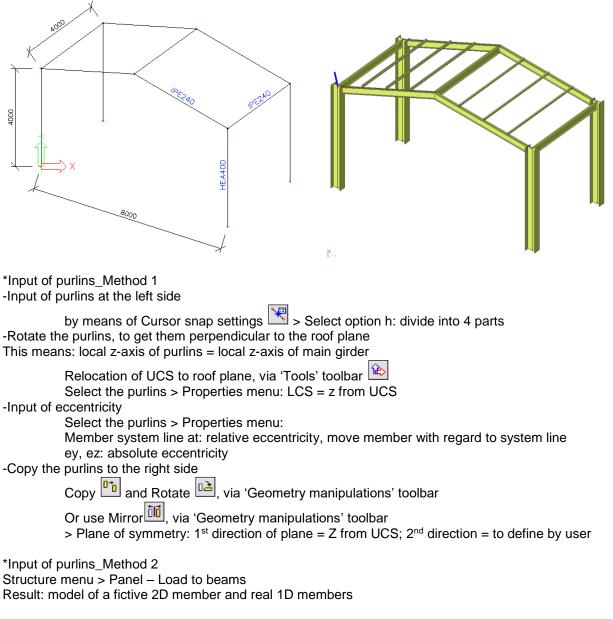
	Α	В	С	D	E	F	G	н	- I -	J	K	L
1	Sn1	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N5		N1
2	Sn2	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N1		N5
3	Sn3	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free			N8
4	Sn4	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free			N10
5	Sn5	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free			N13
6	Sn6	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	-		N15
7	Sn7	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free			N18
8	Sn8	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free			N20
9	Sn9	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free			N23
10	Sn10	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free			N25

	А	В	С	D	E	F	G	Н	1	J
1	Sn1	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N5
2	Sn2	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N1
3	Sn3	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N8
4	Sn4	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N10
5	Sn5	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N13
6	Sn6	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N15
7	Sn7	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N18
8	Sn8	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N20
9	Sn9	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N23
10	Sn10	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N25

- Next copy this table from MS Excel to the nodal support section of the table input in order to insert the nodal supports in the model.

		Name	Туре	Constraint	X	Y	Z	Rx	Ry	Rz	Node
ructure	1	Sn1	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N5
	2	Sn2	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N1
	3	Sn3	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N8
Load	4	Sn4	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N10
<u>.</u>	5	Sn5	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N13
braries	6	Sn6	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N15
brancs	7	Sn7	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N18
	8	Sn8	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N20
	9	Sn9	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N23
	10	Sn10	Standard	Hinged	Rigid	Rigid	Rigid	Free	Free	Free	N25
	•										
									_		
	at No	ode 🏢	1D member 🧏	🖕 2D member 🛛	🛓 Support - no	de 🗙 🛣 Suppor	t - beam 🛛 🚟 Line s	upport - beam	🚾 Line su	ipport - edg	e

- Go to the 1D-members and try inputting manually one purlin (IPE100) by only entering the name, the type, beg node & end node. SCIA Engineer will then insert this beam into the model with a random cross section. This cross section can then be changed to the correct cross section.

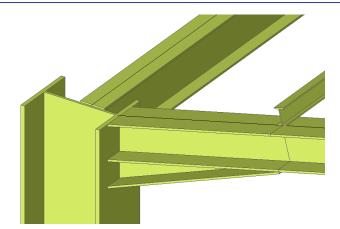

Table input						
-	:5:0		1	÷ 🗸		🔒 🖬 🏹 🎞
		Name	Туре	Beg. n	End n	CrossSection
Structure	11	B11	column (100)	N15	N11	CS2 - HEA200
1.4	12	B12	beam (80)	N14	N12	CS1 - IPE160
sail.	13	B13	beam (80)	N16	N17	CS1 - IPE160
Load	14	B14	column (100)	N18	N19	CS2 - HEA200
1	15	B15	column (100)	N20	N16	CS2 - HEA200
Libraries	16	B16	beam (80)	N19	N17	CS1 - IPE160
	17	B17	beam (80)	N21	N22	CS1 - IPE160
	18	B18	column (100)	N23	N24	CS2 - HEA200
	19	B19	column (100)	N25	N21	CS2 - HEA200
	20	B20	beam (80)	N24	N22	CS1 - IPE160
	21	B21	beam (80)	N2	N6	CS3 - IPE100
	•					

Now try inserting the remaining 1D-elements into the model. Extra functionalities : see annex 5

Example 4: Purlins

1_Input of geometry

*Project data: Frame XYZ - Steel S235 - Purlins IPE 100 - H2 = 1m


2_Activate Structural model

Main menu > Project > Functionality: Structural model

Generate structural model, see 'View' toolbar ^[15] Or via View > Set view parameters > Generate structural model

Attention: Eccentricities in Analysis model and Structural model have to be inputted separately in the Properties menu.

REMARK: It might be necessary to generate the Structural model again after certain actions or adjustments to the model.

3_Input of Haunch

Structure menu > 1D Member > 1D member components > Haunch Add new cross-section first, type I + Ivar Afterwards define the haunch as follows:

Haunch on beam			x
	Name	H5	
	Position	End	-
	Cross-section	CS4 - I + I var (IPE240; 150)	·
	Use from Css	no	
	va [mm]	150,0	
	Geometry		
В	Coord. definition	Rela	-
L-ey	Length x	0,250	
i			
X			
-ez			
√			
		ОК	Cancel

Haunch = additional data to an entity (just like supports, charges, ...) It is possible to copy additional data

-via 'Geometry manipulations' toolbar

Extra possibility: Input of Arbitrary profile

Structure menu > 1D Member > 1D member components > Arbitrary profile Divide member into a number of sections with different cross-sections / different geometrical properties e.g. Haunch with different dimensions at the beginning and the end of the beam

4_Actions after input

*Check structure data

*Connect members/nodes 🖆 (Attention: connect the entire structure!)

Example 5: Bridge

1_Input of geometry

*Project data: Frame XZ – Concrete & Steel R 200,300 8 3000 Ċ R 500,300 1000 10000 *Input of curved beam Structure menu > 1D Member > Member _∠∕<mark>∕</mark>√⊁&⊙○7 New circular arc, via Command line toolbar *Input of steel tension only members h) 🔽 Points on line-curve - N-ths -Cursor snap settings 💌 > Select option h 10 In this way it is possible to snap to each 10th part of a member. -Structure > 1D Member > Column; length of all columns = 3m -Cut columns at the height of the arc > Trim, see 'Geometry manipulations' toolbar 2 From 2D to 3D

Main menu > Project > Project data: change Structure type *Frame XYZ

Copy arc: Copy ¹; spacing is 4m in Y direction (@0;4;0) Say 'yes' to Copy additional data (only the supports in this case)

Scia Engine	eer 15.0.1019
i	Some of the selected entities contain additional data. Copy the add-data as well?
	Yes No

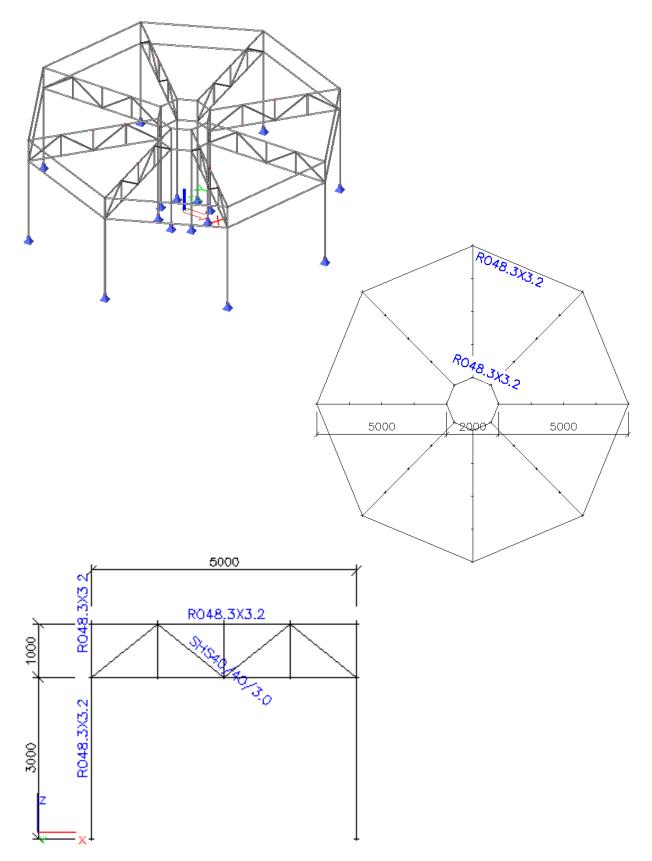
*General XYZ

Add concrete roadway: Structure > 2D Member > Plate

 $Q \circ \Box \Delta \Sigma$ New rectangle, via Command line toolbar

REMARK: It is only possible to switch to a 'higher' Structure type!

3_Actions after input


*Check structure data

*Connect members/nodes 🖆 (Attention: connect the entire structure!)

Example 6: Carrousel

1_Input of geometry

*Project data: Frame XYZ – Steel S235

*Input of one frame

Structure menu > 1D Member > <u>Column</u> Structure menu > Advanced Input > <u>Catalogue blocks</u>: Frame 2D

Move the frame so the bottom node of the left column coincides with co-ordinate 1;0;0

Or move UCS, see 'Tools' toolbar 论

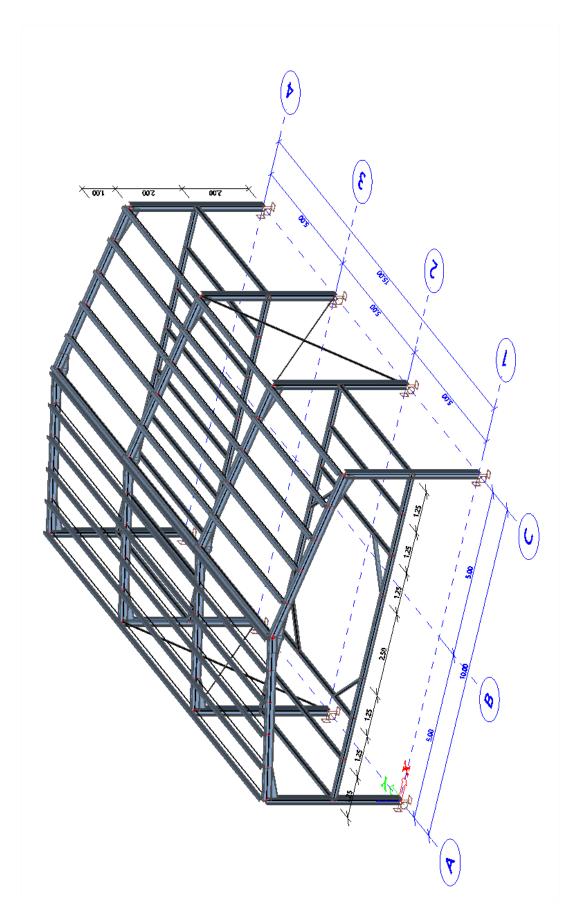
*Multicopy, via 'Geometry manipulations' toolbar Copy + Rotation at same time: around current UCS

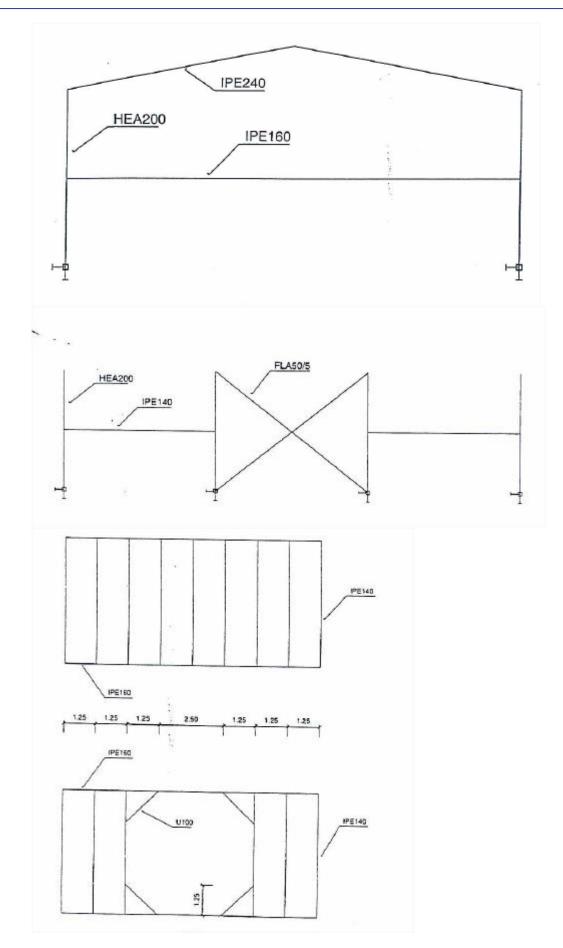
-Let generate connecting beams automatically

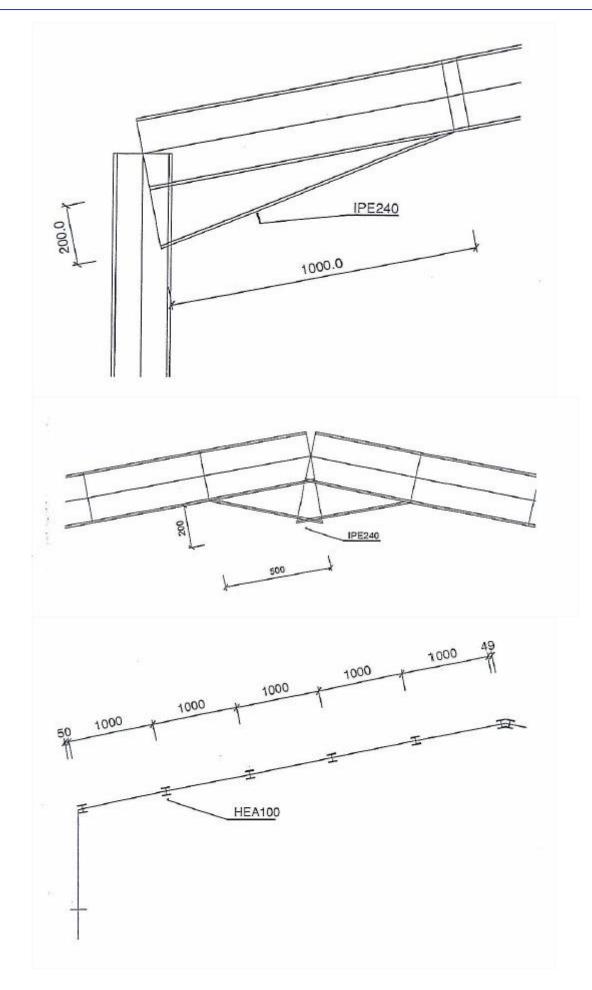
Attention: connecting beams are being generated from all of the <u>selected</u> nodes.

-Copy additional data

In this case only supports; if loads, hinges etc. are added to the original frame, those are copied to the new frames as well.

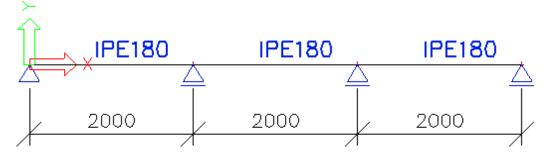

Attention: supports are additional data to nodes, not to members.


Number	of copies 8	•	Connect selected nodes with new beams	V
🗌 Insert	the very last cop	у	Copy additional data	7
Distance	vector		How to define the distance ?	
Define d	istance by cursor	v	between two copies	
x	0,000	m	O from original to the last cop	y
у	0,000	m	- How to define the rotation ?	
z	0,000	m	 between two copies from original to the last cop 	
Rotation			Rotation around	y
rx	0,00	deg	Current UCS	
ry	0,00	deg	O distance vector	
-	360,00	deg		


2_Actions after input

*Check structure data *Connect members/nodes (Attention: connect the entire structure!)

Extra example: 3D Hall



Part 2 – Loads, Load combinations, Calculation and Results

Example 7: Beam with 3 spans

1_Input of geometry

2_Loads

*Definition of load cases

Main menu > Load cases, Combinations > Load cases LC 1: Self weight

LC 2: Distributed load (Perm.)

Load cases		×
🔎 🤮 🗶 🖬 k 📴	🖸 🗠 🖨 🕞 🕞	AI 🔹 🖓
LC1 - Self weight	Name	LC2
LC2 - Distributed load	Description	Distributed load
	Action type	Permanent 🔹
	LoadGroup	LG1 🔹
	Load type	Standard 🔹
	Actions	
	Delete all loads	>>>
	Copy all loads to anot	her loadcase >>>
New Insert Edit	Delete	Close

*Input of loads Main menu > Loads LC 1: Self weight > Calculated by SCIA Engineer LC 2: Distributed load (Perm.) > Line force on beam 10 kN/m

3_Calculation

Main menu > Calculation, mesh > Calculation III or Hidden calculation III, see also 'Project' toolbar <u>Difference</u>: When performing a Hidden calculation the windows with the status of the calculation are suppressed, as a result of which the calculation cannot be interrupted prematurely.

4_Results

After calculation: Main menu > Results

*Graphical display of results Results > Supports > Reactions Results > Beams > Internal forces on beam Results > Beams > Deformations on beam Specify the desired result in the Properties menu

-Selection: All > result on all of the members; Current > result on the selected members -Extreme: Place(s) where the result values are displayed numerically

-Drawing setup: click on - Change the display of the diagrams, display the units, ... After any modification, choose for Actions > Refresh

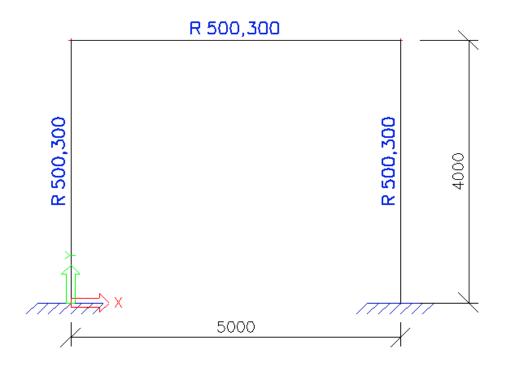
To change unities and number of decimals: go to Setup > Units, or 'Project' toolbar

*Numerical display of results At the bottom of the Properties menu: Actions > Preview

The exact values are calculated in (by default) 10 sections per beam, see Setup > Solver > Number of sections on average member

Solver setup	×
Name	
🗆 General	
Neglect shear force deformation (Ay, Az >> A)	
Type of solver	Direct 👻
Number of sections on average member	10
Warning when maximal translation is bigger than [mm]	1000,00000
Warning when maximal rotation is bigger than [mrad]	100,0
Print time in Calculation Protocol	
Coefficient for reinforcement	1
	OK Cancel

*Result on a specific location


Structure > Model data > Section on beam; afterwards it is necessary to calculate again

*Extra information

-Main > Results > Bill of material Ask for the Mass and Surface of a specific Cross-section or Material type -Main > Results > Calculation protocol Consult the Data of calculation, and Sum of loads and reactions

Example 8: Concrete frame

1_Input of geometry

2_Loads

*Load cases Main menu > Load cases, Combinations > Load cases LC 1: Self weight LC 2: Wind in direction X (Var.) > Line force on beam 5 kN/m

*Load groups

Main menu > Load cases,	Combinations > Load groups

LC 1 > LG 1: Permanent LC 2 > LG 2: Variable – EC1 load type = Wind

			_
Load groups		×	
利 詩 🖌 📽 🔛 🖸	≌ ⊜ ≊∎	Ali 💽 🝸	
LG1	Name	LG2	1
LG2	Relation	Standard	
	Load	Variable	
	Structure	Building	
	Load type	Wind	
New Insert Edit	Delete	Close	J
	Load groups	Load groups	LG1 LG2 LG2 LG2 LG2 LG2 LG2 LG2 LG2 LC3 LC3 LC3 LC3 LC3 LC3 LC3 LC3 LC3 LC3

*Input of loads Main menu > Load

Fast input of loads via Command line toolbar ; modification of properties via Properties menu

*Load combinations

Main menu > Load cases, Combinations > Combinations Linear combination: 1,00.LC 1 + 1,00.LC 2

Combinations		×
🔎 🤮 🥒 📸 💽 🗠	Input combinations	•
Combi 1 - 1.00LC1 + 1,00LC2	Name	Combi 1
	Description	1.00LC1 + 1,00LC2
	Туре	Linear - ultimate
	Amplified Sway M	🔲 no
	Contents of co	
	LC1 - Eigen gewic	1,00
	LC2 - Permanent	1,00
New Insert Edit De	elete	Close

*Graphical display of results

-Loads, v	ia Command	line toolbar	📥 and	Ĵ∎	
-----------	------------	--------------	-------	----	--

-Values of loads, via Command line toolbar 🖳 > Loads/Masses > Labels of loads

3_Results

*Ask for Results Main menu > Results

Fast displaying of results via Command line toolbar

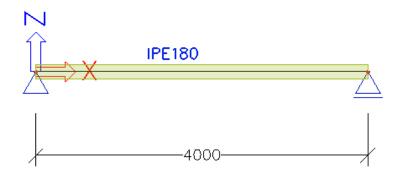
*Scaling of Results

Via 'Tools' toolbar

4_Table results

Activate the table results functionality via view > toolbars > table results

*Ask for Results Main menu > Results > Beams > Internal forces on beam


Next click on the green refresh button in order to load the results into the table.

6	🗩 📉 🌃 📰 Int	ternal forces on memb	er; Linear calculation	, Extreme : Global, Sy	vstem : LCS; Selection	: B3; Combinations : I	ENULS
4	Member	CSS	dx [m]	Case	N [kN]	Vz [kN]	My [kNm]
1	B3	CS1 - Rectangle	0,000	ENULS/4	-20,43	82,48	-46,7
2	B3	CS1 - Rectangle	0,000	ENULS/7	-7,44	34,20	-20,1
3	B3	CS1 - Rectangle	5,000	ENULS/4	-20,43	-84,85	-52,7
4	B3	CS1 - Rectangle	0,000	ENULS/1	-20,43	84,85	-52,70
5	B3	CS1 - Rectangle	2.500	ENULS/8	-18,21	0.00	55.3

These table results can then be copied to a spreadsheet application such as MS Excel.

Example 9a: Beam on 2 supports

1_Input of geometry

*Configuration of the example

Suppose this is the section of a narrow roadway, with a footpath and a traffic lane over which only one car at a time can drive.

2_Loads

*Load cases & Load groups

Load Case	Туре	Load Group	Туре	Relationships	Variable LG
Self Weight	Р	LG 1		1. Standard	A AND/OR B
LC 1: Permanent	Р	LG 1		2. Exclusive	A OR B
LC 2: Pedestrian	V	LG 2	Standard	3. Together	A AND B
LC 3: Car Left	V	LG 3	Exclusive	4. Master/Slave	A; A AND B
LC 4: Car Right	V	LG 3	Exclusive	A B	

By placing *Car Left* and *Car Right* in the same load group with type 'exclusive', we define that both load cases can never appear together in a load combination.

*Input of loads Input all loads as point loads of 1kN. Only the *Self Weight* is not taken into account for this example.

3_Load combinations

Suppose a combination with content & coefficients as follows:

LC 1	1,35
LC 2	1,20
LC 3	0,50
LC 4	1,50

*Type = Linear combination:

Only one combination is generated

Relationships of the load groups are NOT taken into account + Coefficients as inputted by the user

1,35.LC 1 + 1,20.LC 2 + 0,50.LC 3 + 1,50.LC 4

*Type = Eurocode combination at ULS or SLS:

All possible *linear* combinations according to the relationships of the load groups are generated Safety factors according to the Eurocode + Psi-factors according to the Eurocode (see content of the load groups) + Coefficients as inputted by the user

1,35.1,35.LC 1 1,35.1,35.LC 1 + 1,50.1,20.LC 2 1,35.1,35.LC 1 + 1,50.1,20.LC 2 + 1,05.0,50.LC 3 1,35.1,35.LC 1 + 1,50.1,20.LC 2 + 1,05.1,50.LC 4

*Type = Envelope combination:

All possible *linear* combinations according to the relationships of the load groups are generated Coefficients as inputted by the user

1,35.LC 1 1,35.LC 1 + 1,20.LC 2 1,35.LC 1 + 1,20.LC 2 + 0,50.LC3 1,35.LC 1 + 1,20.LC 2 + 1,50.LC4

Combinations			x
📌 🤮 🖋 💺 🗠 🖂	Input combinations		•
Linear	Name	EN-ULS	
EN-ULS	Description		
EN-SLS Envelope	Туре	EN-ULS (STR/GEO) Set B	_
	Structure	Building	
	Active coefficients		
	Contents of co		
	LC2 - Permanent	1,00	
	LC3 - Voetganger	1,00	
	LC4 - Auto links [-]	1,00	
	LC5 - Auto rechts	1,00	
	Actions		
	Explode to envelopes	>	>>
	Explode to linear	>	>>
	Show Decomposed EN	combinations >	>>
New Insert Edit De	lete	a	ose

'Black Box': As well for combinations according to the Eurocode as for Envelope combinations, the generated *linear* combinations are not shown.

If the user wants to know the content of such combinations, the Action 'Explode to linear' has to be executed.

4_Result classes

Main menu > Load cases, Combinations > Result classes

A Result class makes it possible to make an Envelope combination of an arbitrary amount of Combinations and/or Load cases.

RC 1: ULS + SLS

Result classes		x
🎜 🤮 🖋 💺 🗠	😐 🚭 Al	• 7
ULS+SLS	Name	ULS+SLS
	Description	
	🗆 List	
		EN-ULS - EN-ULS (STR/GEO) Set B
		EN-SLS - EN-SLS Characteristic
New Insert Edit	Delete	Close

5_Results

*Results of EN-ULS / EN-SLS / Envelope combination

Only the <u>envelope of the results</u> is shown \rightarrow On every section of the structure you will find the most positive & most negative result.

It is only possible to ask the results of the (in the background generated) linear combinations separately, if the Action 'Explode to linear' has been executed.

*Governing linear combinations

See Actions > Print preview: ULS/1, ULS/2, et cetera

The numbers after the combination name refer to the Combination key, where the governing linear combinations are fully displayed. This Combination key can only be asked for in the Document.

Part 3 – Engineering report and Images

Example 9b: Beam on 2 supports

1_Input of geometry

See Example 9a

2_Engineering report

Main menu > Engineering report, or 'Project' toolbar

In the Engineering report you can find 5 windows which are described in the following picture. Besides the preview window the user can choose to move the other 4 windows by dragging these to the preferred position.

		report, a transf - engineering report	
Home View			
Cut 9 Undo -			
Paste Report Insert Edit Delete propeties	Move Move Indent Outdent Regenerate Regenerate selected outdated	Edit picture View Edit View View DWG colour properties point picture parameters point converter	
Clipboard Undo Docume		Edit pictures Edit external pictures	
Navigator P. X	New items = ×		Properties Properties
	非可能的自己		Name Report_1
	ar so to sector to sec		Language English (United States) *
			First page number 1
	Special items		First chapter number 1
	Scia Design Forms (standalone) Inbox		Numbering of chapters Structured
	- Project		Hide empty items
	Libraries		
	⊕ Structure		Description
	1 Load		Properties:
	Results SGB - Scaffolding		Property of
	Special		
	⊕-Steel		selected item
	Aluminium Custom check		
	Pipeline		
	Timber		
	Concrete Concrete 15		
	Steel concrete bridge		
	Geotechnics Geotechnics Geotechnics		
	Composite Deam E Composite Column		fasks P ×
	Mobile loads		
	Influence lines Design Forms		0001000
	Special		Request State P
	- Gallery pictures		
	Report templates		
Navigator:	New items:	Preview window	Tasks:
		Preview window	
Structure of the Eng. Rep.	Possible input items		Overview of
Structure of the Eng. hep.	r ossible input items		
			running/pending
			tasks
			-
		1	
www.nemetschek-scia.com Page 1			Page width (=) (+)

*Content of engineering report

Via button Insert at the top of the Start menu > Show/hide to be added report components

Added report components > Navigator

* ≪ T * = ₩ ₩ ₩ ₩		
Special items		
E. Scia Design Forms (standalone)		
⊞ Inbox		
Project	Mark Sectors	
H- Libraries	Navigator	×
H Solver and Mesh		
H- Structure	📩 Page format	0
H-Load		
Construction stages	📃 Header / Footer	•
H- Results		-
E SGB - Scaffolding	Table of contents	•
E Special		
F- Steel	Materials	0
E-Aluminium		
E Custom check	Cross-sections	0
Pipeline		
Timber	v Toad cases	0
E Concrete		
E Concrete 15	🛄 🛄 LC4 / Tot. value (Document picture)	•
E Geotechnics	Internal forces on beam	£ 0
E Composite Column	Combination key	• •
⊕ Mobile loads		
⊕ Influence lines	V The Load cases	0
🕀 Design Forms		-
	Internal forces on member; My (Document picture)	•
Gallery pictures		
Report templates		

The above tables can be displaced on the screen.

The components to be inserted can be filtered and it is possible to hide or lock the added parts.

*Refresh of engineering report

After adjustments of data in the project > some components of the engineering report must be regenerated.

-Refresh of selection, see Engineering Report Toolbar

-Refresh of entire Engineering Report, see Engineering Report Toolbar with this option, it is possible to not regenerate some components by hiding or locking them.

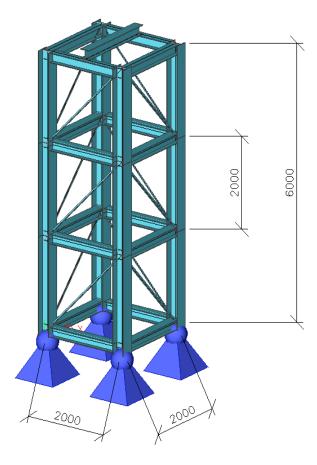
*Properties of the different components

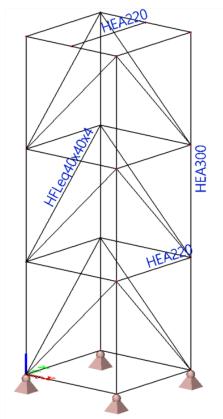
After selecting an item in the Navigator, some of its properties can be accessed and modified in the Property menu.

The advanced properties can be customized > see Engineering Report Toolbar Edit

*Combination key: display of governing linear combinations New Engineering Report item > Sets > Combination key

Example: Take a look at the Internal forces on beam, according to Combinations = ULS; Deformations on beam, according to Combinations = SLS. In these tables with results is referred to ULS/1 etc., and SLS/2 etc. The numbers after the combination names refer to the Combination key, where the governing linear combinations are written out.


*Language Engineering report


The language of both in-and output of the Engineering report can be changed using the Properties menu.

Example 10: Bearing frame

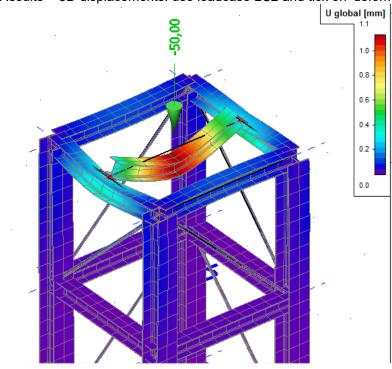
1_Input of geometry

*Project data: General XYZ – Steel S235

*Building up a Line grid, see 'Tools' toolbar

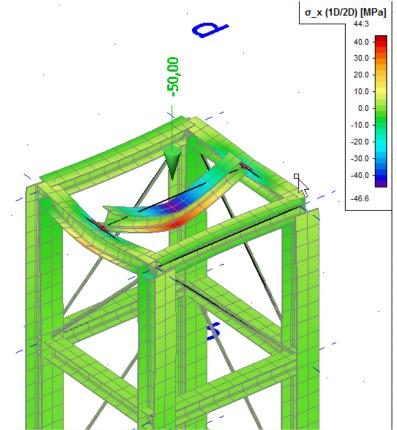
-Necessary to generate Overview drawings

*Actions after input!


2_Loads

- LC 1: Self weight
- LC 2: Vertical load (Var.) > Point force 50 kN
- LC 3: Horizontal load (Var.) > Point force 20 kN

3_3D displacement & 3D stress


It is possible to view the displacement & stresses on surfaces of 1D members.

-Run the calculation

-Results > 3D displacements: use loadcase LC2 and tick on 'deformed structure'; click on refresh.

-Results > 3D stress

4_Pictures

Following actions are accessible via Main menu > Drawing tools, or 'Project' toolbar, or right mouse click in screen

-Print data

Claim the Preview of a certain table, or send Table to document

-Print picture Print the picture on the display, after choice of printer, choice of template file and possible editing

-Picture to document

Send the picture on the display directly to the document

-Picture to gallery

Send the picture on the display to the Picture gallery, where it can be edited before saving it or adding it to the document

-Picture gallery

Edit pictures by means of the Gallery editor; e.g. text and dimension lines can be added

-Paperspace gallery

Choose/make a template file for printing + input and arrange the picture(s) to be printed

5_Overview drawings

Main menu > Project > Functionality: Overview drawings

Picture wizard, via Picture gallery > New by wizard ¹/₁, or right mouse click in screen ³; choose Sections by planes of line grid

6_Engineering report

Main menu > Engineering report, or 'Project' toolbar 🔲

*Content of engineering report

Via button Insert at the top of the Home menu > Show/hide to be added report components Added report components > Navigator

*Add picture to Engineering report

-Add picture directly into Engineering report -Add picture into the Inbox in the Item menu

-Picture to report as a printscreen via Screenshot into Engineering report -Picture to report as a dynamic image via Live picture into Engineering report

Images can first be edited using Picture to gallery

*Add text to Engineering report Special items > Formatted text

Also special symbols can be entered, example 'σ' = ' σ '

It is possible to insert the contents of a table of for instance Excel via copy-paste.

*Chapter Maker

Indented tables: Each 2 tables which have a logical relationship, can be linked to each other, e.g. the tables Nodes and Displacement of nodes. Select the item Displacement of nodes > choose the option Indent

Indented pictures: Also a picture can be linked to a table, e.g. picture of the structure with a particular load displayed, and table Load cases. Select the picture > choose the option Indent

*Add header and footer Special items > Header / Footer

Adapt the header and footer properties > see Engineering Report Toolbar

Both text and images can be inserted. The header and footer can be saved as a template, a .HFX file.

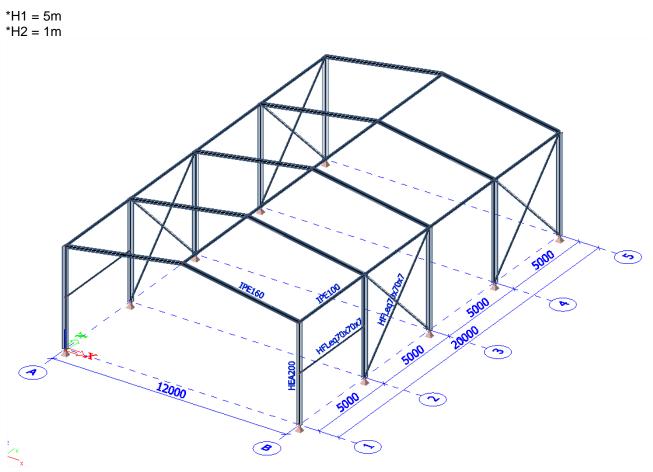
*Adapt layout of Engineering report

-Change page orientation > Special items > Page format

-Adapt the general layout of the report > Special items > Style Note: The SCIA logo can be removed in here.

-Adapt tables: Empty cells may be hidden. Multiple properties displayed in one row > Template Header

Select the table > Edit: adjustments can be saved and copied to the other tables in the engineering report. These templates are saved as .TLX files.


*Export and print of Engineering report

-Print: Engineering report setup > Print
-Export: Engineering report setup > Export

Part 4 – Introduction to Steel and Concrete code checks

Example 11: Steel hall

1_Input of geometry

*Modification of the geometry: see picture above

*Actions after input! These are necessary to connect the newly added beams.

2_Loads

- LC 1: Self weight
- LC 2: Roof load (Perm.) > Line force 5 kN/m
- LC 3: Wind load X direction (Var., Exclusive)> Line force 2 kN/m
- LC 4: Wind load -X direction (Var., Exclusive) > Line force 2 kN/m

3_Load Combinations

CO1: EN-ULS (STR/GEO) Set B CO2: EN-SLS Characteristic

4_Steel Setup

Main menu > Steel

a) General settings

All of the input in the section Steel > Beams > Setup is valid for the <u>whole</u> project. -Setup > Member check A steel structure is by default sway for buckling around the Y-Y axis, and non-sway for buckling around the Z-Z axis.

-Setup > Relative deformation

The user can per beam type impose a limit for permissible relative deformation.

-Setup > Buckling defaults

The ky and kz factors are by default calculated by SCIA Engineer. <u>Attention</u>, this is only valid for simple structures! In other cases: input buckling factor or buckling length yourself.

b) Specific settings

-It is possible to overwrite a number of general settings per member, by means of the option Steel > Beams > Steel member data.

-To overwrite buckling data: Select a beam, and click on behind Buckling and relative lengths in the Properties menu. Buckling data BC1 are created and can be edited.

5_Steel Checks

a) ULS check

Steel > Beams > Check Combinations = ULS; Values = Section check, Stability check, Unity check (=maximum of both previous checks); Extreme = Member

Actions > Preview: Summarizing overview Selection = Current: select 1 column; Output = Detailed

Actions > Single Check: Detailed information per member

Actions > Autodesign: Optimize one cross-section group at a time, to obtain "1" as maximal value for the unity check

Attention: After optimization the structure has to be recalculated!

b) SLS check

Steel > Relative deformation Combinations = SLS; Values = Check uz (= unity check with regard to the inputted values in Steel > Beams > Setup > Relative deformation)

6_Steel Connections

*Input of steel connection

→ This option is not included in the Concept Edition. You need the module esa.18 that is also available with Professional or Expert Editions

Main menu > Project > Functionality: Steel – Frame rigid connections The functionality Structural model is automatically activated.

-Generate structural model, see 'View' toolbar 🖻

-Main menu > Steel > Connections > Frame bolted/welded – strong axis; select connecting node and beams

-Input properties of the connection in the Properties menu

-Display label of steel connection, via Set view parameters for all > Connections > Steel connections label > Display label + Name

*Check of steel connection

➔ This option is not included in the Concept Edition. You need the module esasd.02 that is also available with Professional or Expert Editions

Actions > Results; verify if the unity checks satisfy

*Transfer stiffness of connection to analysis model

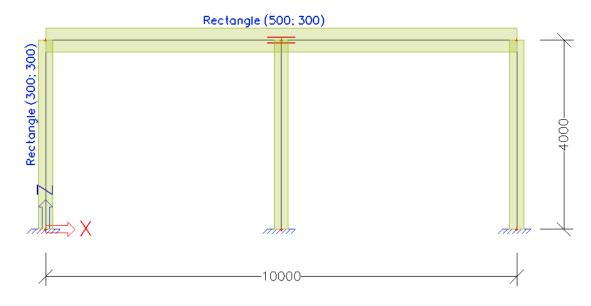
-In the Properties menu of the steel connection, select the option Update stiffness

-Recalculate the structure

-Display analysis model, via Set view parameters for all > Structure > Model type; Show model data, via Command line toolbar E: Hinge with adapted stiffness has been added to the connecting node

Since connections and hinges are additional data, it is possible to copy these, via 'Geometry manipulations' toolbar are or via right mouse click in screen.

7_Steel connection monodrawings


→ This option is not included in the Concept Edition. You need the module esadt.02 that is also available with Professional or Expert Editions

Main menu > Project > Functionality: Steel – Connection monodrawings Picture wizard, via Picture gallery > New by wizard 10, or right mouse click in screen 10

Example 12: Concrete frame

1_Input of geometry

*Project data: Frame XZ - Concrete C30/37 - Reinforcement steel B500A

2_Actions after input

*Check structure data ¹¹ *Connect members/nodes ¹² (Attention: connect the entire structure!)

3_Loads

*Load cases LC 1: Self weight LC 2: Roof load (Perm.) > Line force 33 kN/m

*Load combinations CO 1: EN-ULS (STR/GEO) Set B CO 2: EN-SLS Quasi-Permanent

4_Concrete Settings new Concrete 15

Main menu > Concrete 15

Concrete settings

All of the input in the section Concrete settings is valid for the <u>whole</u> project. -Concrete settings > Design defaults > Default sway type Concrete beams and columns are by default sway for buckling around both the Y-Y and Z-Z axis. -Concrete settings > Design defaults > Beams Choose for upper and lower reinforcement: diameter 16mm

Specific settings

It is possible to overwrite a number of general settings per member, by means of the option Concrete 15 > Setting per member > 1D member data.

A label is displayed on each member with 1D member data, e.g. CMD1. This label can be selected to view or edit the settings in the Properties menu. Since 1D member data are attributes, it is possible to

copy these to other beams, via 'Geometry manipulations' toolbar ¹ or via right mouse click in screen > copy attributes.

5_Reinforcement design of beam new Concrete 15

Theoretical reinforcement

Internal forces

Concrete 15 > Reinforcement design – 1D members > Internal forces; view for Class = All ULS (created by SCIA Engineer) the Values = M_y and M_Edy (you might have to increase the number of sections to be able to see the capping of the momentline; e.g. 20 via setup > solver > number of sections on average member)

*The user can set the capping of the momentline on/off in the Concrete settings > Solver setting > Internal forces ULS > Take into account additional tensile force caused by shear force (shift rules).

Slenderness

Concrete 15 > Reinforcement design - 1D members > Slenderness; Using of second order effect in calculation depends on the check of slenderness, because if the check is slenderness is greater than limit slenderness, the second order effect has to be taken into account for column calculation.

Conditions	Calculation of second order effect
$\lambda_y > \lambda_{imy} \text{ Or } \lambda_z > \lambda_{imz}$	YES
$\lambda_y \leq \lambda_{imy}$ and $\lambda_z \leq \lambda_{imz}$	NO

*By default the above check is executed automatically. This can be modified in Concrete settings > Solver settings > Internal forces > Internal forces ULS > Use second order effect

Theoretically required reinforcement

Concrete 15 > Reinforcement design - 1D member > Reinforcement design ; select the beam and view for Class = All ULS the Value = A_sz_req+ & A_sz_req-

Actions > Preview: Summarizing overview (output = brief), Normal output (output = standard), Detailed output (output = detailed).

For rectangular sections the following definitions are applicable:

-A_sz_req+ = theoretically needed reinforcement placed on the edges at the positive direction of the z-axis (LCS)

-A_sz_req- = theoretically needed reinforcement placed on the edges at the negative direction of the z-axis (LCS)

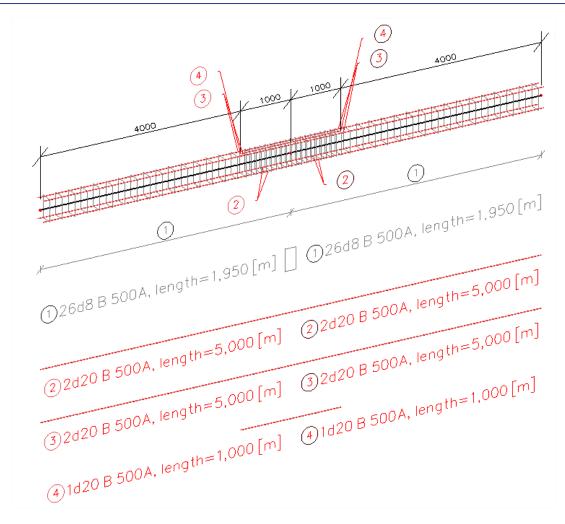
-A_sy_req+ = theoretically needed reinforcement placed on the edges at the positive direction of the y-axis (LCS)

-A_sy_req- = theoretically needed reinforcement placed on the edges at the negative direction of the y-axis (LCS)

- A_swm_req = theoretically needed shear reinforcement.

- A_sz_prov+ = is the provided reinforcement placed on the edges at the positive direction of the z-axis (LCS) in order to satisfy A_sz_req+.

The used diameters are defined in the concrete settings (Concrete settings > Design defaults > Beam) or can be set per member via 1D member data (Setting per member > 1D member data)


The same methodology applies for the other remaining results (A_sz_prov-, A_sy_prov+, A_sy_prov-, A_swm_prov)

When you choose for a detailed output (output > detailed) and then generate the preview you will get an explanation of errors/warnings and notes at the bottom page.

Practical reinforcement

Adding visible reinforcement into the model.

* Concrete 15 > Reinforcement input + edit > 1D members > New reinforcement: select the beam in which you want to add reinforcement. After that you'll need to define the start- and endpoint of the reinforcement. Try inserting the following practical reinforcement for the beam.

*Longitudinal reinforcement window:

- Click on edit and try adding in each corner Ø20mm longitudinal reinforcement.

- In the upper right corner: you can find the reinforcement layers. New layers can be added via the button 'new layer' in the bottom left corner.

*Stirrups are split in zones (4m - 1m - 1m - 4m) in which two different stirrup distances are defined (250mm & 100mm).

*Stirrup zones can be defined by clicking on a stirrup and then click on 'Edit stirrup distances' in the bottom right corner.

Checks

Concrete 15 > Reinforcement check (ULS+SLS)

*Stiffnesses: Stiffness presentation command is used for presentation of calculated stiffness.

*Capacity - response (ULS): is based on the calculation of strain and stress in particular component (concrete fibre, reinforcement bar) and comparison with limited values with respect of EN 1992-1-1 requirements

*Capacity – diagram (ULS): Capacity - diagram services uses creation of interaction diagram which is a graph illustrating the capacity of concrete member to resist a set of combinations of axial force and bending moment.

*Shear + torsion (ULS): this check consists of three checks: shear check, torsion check, interaction of shear and torsion check.

*Stress limitation (SLS): is based on the calculation of stresses in particular component (concrete fibre, reinforcement bar) and comparison with limited values with respect of EN 1992-1-1 requirements.

*Crack width (SLS): is calculated according to clause 7.3.4 in EN 1992-1-1

*Detailing provision: applies the rules from the Eurocode for a proper design respecting safety, serviceability and durability of the structure.

REMARK: the user can let the program automatically design the needed reinforcement that satisfies the checks in the old concrete menu. This can be done via Concrete > 1D member > Automatic member reinforcement design.

6_Concrete Settings old Concrete

Main menu > Concrete

General settings

All of the input in the section Concrete > 1D member > Setup is valid for the <u>whole</u> project. -Setup > Design defaults Concrete beams and columns are by default sway for buckling around both the Y-Y and Z-Z axis. -Setup > Design defaults > Tab Beams

Choose for upper and lower reinforcement: diameter 16mm

Specific settings

It is possible to overwrite a number of general settings per member, by means of the option Concrete > 1D member > Member data.

A label is displayed on each member with Member data, e.g. DC1. This label can be selected to view or edit the settings in the Properties menu. Since Member data are additional data, it is possible to

copy these to other beams, via 'Geometry manipulations' toolbar ¹ or via right mouse click in screen.

7_Reinforcement design of beam old Concrete

Theoretical reinforcement Internal forces Concrete > 1D member > Internal forces

*1D member > Setup > General > Calculation > Tab Beams; select the options Moment capping & Shear force capping at supports

*1D member > Internal forces; view for Class = All ULS (created by SCIA Engineer) the Values = My and My, recalc

Theoretically required reinforcement

Concrete > 1D member > Member design - Design; select the beam and view for Class = All ULS the Value = As,total req

Actions > Preview: Summarizing overview

-As,req = theoretically needed reinforcement -Reinf. (no.) = suggested by SCIA Engineer as practical reinforcement, taking into account the diameter inputted in Concrete > 1D member > Setup > Design defaults > Tab Beams (upper and lower reinforcement: diameter 16mm)

Actions > Calculation info: Description of errors and warnings When asking results for Member design – Design, the option Print explanation of errors and warnings can be selected in the Properties menu. In that case the explanation is shown when opening the Preview.

Actions > Single check: Detailed information per member; select a member and then the Single crosssection window is opened. Choose an extreme internal force and click on the Calculation button at the left. Adding basic reinforcement = along the length of the beam

*1D member > Member data; select the beam and set Upper reinforcement to 2x diameter 14mm, Lower reinforcement to 2x diameter 12mm. SCIA Engineer is then forced to use at least this amount of reinforcement.

*1D member > Member design - Design; Class = All ULS Actions > Preview

-As,user = specified basic reinforcement in the Member data

-As,req = As,additional req = what is needed supplementary (on top of As,user) to obtain the theoretically needed reinforcement

In this case: extra reinforcement is needed above the middle column

-Reinf. (no.) = what is specified in the Member data as basic reinforcement + what SCIA Engineer proposes as supplementary reinforcement to obtain the theoretically needed reinforcement

Practical reinforcement

Adding additional reinforcement = on specific location(s) on the beam

*1D member > Redes (without As) > New reinforcement: add supplementary reinforcement where necessary (both stirrups and longitudinal reinforcement)

In this case: select the span over the middle column, where extra reinforcement is needed.

*Adopt the user basic reinforcement: Yes > The basic (theoretical) reinforcement of 2x 14mm (Upper reinforcement) and 2x 12mm (Lower reinforcement) is now transferred to practical reinforcement.

Scia En	gineer 🔀
2	Do you want to use user defined reinforcement? (Note: User defined reinforcement can be used only for simple beam)
	Yes <u>N</u> o

*Stirrup shape manager: choose predefined stirrup shape

*Longitudinal reinforcement window:

-In the upper right corner: already defined layers, sc. L1 and L2. This is the transferred basic reinforcement, respectively at the top and bottom of the beam.

-Add additional reinforcement: via "New reinforcement parameters"; set Number of bars to 1, Profile to 14mm, Stirrup name to S1, Edge index to 2. After a click on [New layer], layer L3 is added.

*1D member > Member design - Design; select the beam and view for Class = All ULS the Value = As,add req

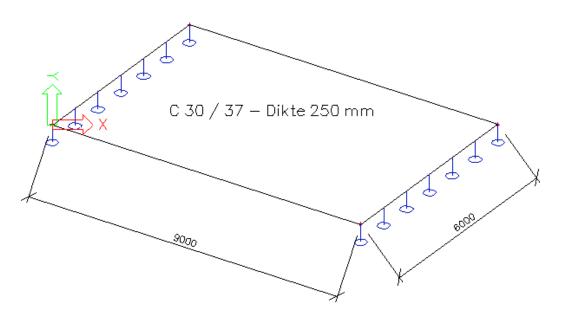
Checks

Concrete > 1D member > Member check - Check of non-prestressed concrete

*Crack control: for Class = All SLS

Possible for both theoretical and practical reinforcement, see Concrete > 1D member > Setup > General > Calculation > For stiffness, allowable stress, punching and crack-proof calculation use reinforcement

*Check response: for Class = All ULS Only possible for practical reinforcement, because for this check the exact location and diameter of each reinforcement bar has to be known


*Check capacity: for Class = All ULS Only possible for practical reinforcement, because for this check the exact location and diameter of each reinforcement bar has to be known

Part 5 – Plates, Walls and Shells

Example 13: Rectangular plate

1_Input of geometry

*Project data: Plate XY – Project level Advanced

*Input plate: Structure menu > 2D Member > Plate New rectangle, via Command line toolbar a diagonal of the rectangle; define the 2 nodes on

After input, you can adapt the <u>geometry</u> of a selected entity via Actions > Table edit geometry & adapt the <u>properties</u> via Properties menu

*Input supports: Structure menu > Model data > Support > Line on 2D member edge

2_Load cases

- LC 1: Self weight
- LC 2: Walls on long edges (Perm.)> Line force 10 kN/m
- LC 3: Service load (Var.) > Surface load 2 kN/m²

3_Finite elements mesh

*Mesh generation

Main menu > Calculation, Mesh > Mesh generation, or 'Project' toolbar

*Graphical display of mesh

Set view parameters for all, via right mouse click or Command line toolbar > Structure > Mesh > Draw mesh > Labels > Mesh > Display label

*Mesh refinement Main menu > Calculation, Mesh > Mesh setup, or Setup > Mesh Average size of 2D elements, by default = 1m

3	Mesh setup	×
1	Name	•
	General mesh settings	
	Minimal distance between two points [m]	0,001
	Average number of tiles of 1d element	1
	Average size of 2d element/curved element [m]	1,000
•	Definition of mesh element size for panels	Manual
	Average size of panel element [m]	1,000
	Elastic mesh	
	Use automatic mesh refinement	
	1D elements	
	Minimal length of beam element [m]	0,100
	Maximal length of beam element [m]	1000,000
	Average size of cables, tendons, elements on subsoil, nonl	1,000
	Generation of nodes in connections of beam elements	
	Generation of nodes under concentrated loads on beam el	v
	i 🖻 🖬	OK

4_Check of input data

*Main menu > Calculation, Mesh > Calculation; option Test of input data is sufficient. With this function, the applied loads are redistributed to the mesh elements and mesh nodes.

*Main menu > Calculation, Mesh > 2D data viewer Surface loads: Values = qz, System = Global LC 1 & 3: Uniform distribution over the mesh elements LC 2: Line forces are redistributed to point forces in the mesh nodes

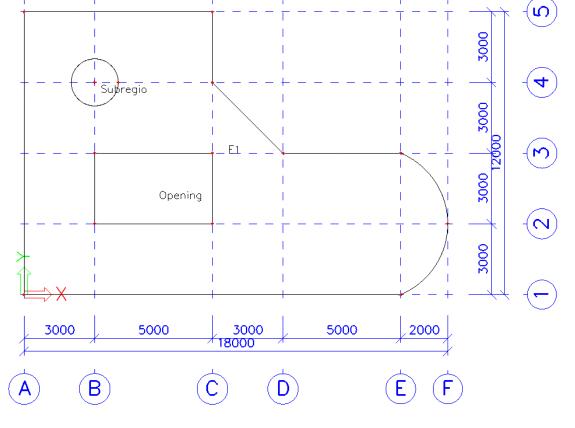
5_Results

*Results on the plate Main menu > Results > 2D Members > Displacement of nodes Main menu > Results > 2D Members > Internal forces Main menu > Results > 2D Members > Stresses

Specify the desired results in the Properties menu -System Local: according to the local axes of the mesh elements LCS – Member 2D: according to the axes of the LCS of the 2D member <u>Attention</u> when using curved shell elements! -Location: 4 ways to ask for the results, see Annex 3 -Type forces: Basic, Principal or Dimensional magnitudes, see Annex 2

-Drawing setup: Click on -> Adapt display of 2D results, Minimum and maximum settings, ...

After adaptations, always perform Actions > Refresh


*Accuracy of the results If the results at the 4 locations differ a lot, then the results are inaccurate and the mesh has to be refined. Basic rule for size of mesh elements = 1 to 2 times the thickness of the plate

*Reactions in the line support Results > Supports > Intensity

Example 14: Slab on elastic foundation (subsoil)

1_Input of geometry

*Project data: Concrete C20/25 - Plate thickness 200mm

*Input plate

Input by means of a Line grid, see 'Tools' toolbar

Snap to the points of the line grid by means of the Cursor snap settings, see Command line toolbar

Structure > 2D Member > Plate

New polygon, via Command line toolbar straight line & New circular arc

*Input extra parts Structure > 2D Member > 2D member components > Opening New rectangle Structure > 2D Member > 2D member components > Subregion New circle (centre - radius) with radius = 1m; define centre point + point on circle @1;0;0

REMARK: Instructions are being shown on the Command line!

*Input supports Main menu > Project > Functionality: Subsoil Structure > Model data > Support > Surface (elas. foundation)

2_Loads

- *Load cases
- LC 1: Self weight
- LC 2: Walls on the outer edges (Perm.) > Line force 10 kN/m
- LC 3: Freestanding walls (Perm.) > Line force 6,5 kN/m
- LC 4: Service load (Var.) > Surface load 2 kN/m²

LC 5: Service load on subregion (Var.) > Surface load 1,5 kN/m²

*Load combinations CO 1: EN-ULS (STR/GEO) Set B CO 2: EN-SLS Quasi-Permanent

3_Finite elements mesh

*Mesh generation

Main menu > Calculation, Mesh > Mesh generation, or 'Project' toolbar

*Mesh refinement Main menu > Calculation, Mesh > Mesh setup; Average size of 2D elements = 1 to 2 times the thickness of the plate

4_Check of input data

*Main menu > Calculation, Mesh > Calculation; option Test of input data

*Main menu > Calculation, Mesh > 2D data viewer

5_Results

*Results on the plate Results > 2D Members > Internal forces

*Result on specific place Results > 2D Members > Section on 2D member; it is not necessary to calculate again <u>Attention</u>: Properties of a section -Draw = direction for the graphical display of the results on the section -Direction of cut = 2nd co-ordinate of a direction vector which defines the direction of the section (1st coordinate is the origin)

*Elastic foundation Results > 2D Members > Contact stresses

REMARK: Convention for soil stresses: positive value = compressive stress, negative value = tensile stress.

6_Eliminate tension in subsoil

➔ This option is not included in the Concept Edition. This is the module esas.08 that is available with Professional or Expert Editions

*Main menu > Project > Functionality: Nonlinearity + Support nonlinearity/Soil spring

*Main menu > Load cases, Combinations > Nonlinear combinations

*Main menu > Calculation, Mesh > Calculation; option Nonlinear calculation

*Take a look at the new results > Contact stresses: tension has been eliminated

7_Concrete Settings

For the reinforcement design the user should use at the moment the old concrete menu since 2D reinforcement design isn't yet supported in the new concrete menu (=Concrete 15). Main menu > Concrete

a) General settings

All of the input in the section Concrete > 2D member > Setup is valid for the <u>whole</u> project. 2D member > Setup > Design defaults > 2D structures and slabs Choose for upper and lower reinforcement: diameter 10mm

b) Specific settings

It is possible to overwrite a number of general settings per 2D member, by means of the option Concrete > 2D member > Member data.

A label is displayed on each 2D member with Member data, e.g. DSC1. This label can be selected to view or edit the settings in the Properties menu. Since Member data are additional data, it is possible to

copy these to other 2D members, via 'Geometry manipulations' toolbar ^{III} or via right mouse click in screen.

8_ Reinforcement design of plate

a) Theoretical reinforcement Internal forces

see Main menu > Results

Theoretically required reinforcement

Concrete > 2D member > Member design – Design – ULS; view for Class = All ULS the Reinforcement = Required reinforcement, with Value = As

Actions > Preview: Summarizing overview

 $-As_up =$ theoretically needed upper reinforcement, $As_lo =$ theoretically needed lower reinforcement -direction 1 is by default = x direction of LCS of the plate, direction 2 is by default = y direction of LCS of the plate

Adding basic reinforcement = on the whole plate

*2D member > Member data; select the plate, choose under Basic data for the option User reinforcement, and fill in diameter and basic distance for directions 1 and 2

*2D member > Member design – Design – ULS; view for Class = All ULS the Reinforcement = User reinforcement/Additional reinforcement, with Value = As

b) Practical reinforcement

*2D member > Reinforcement 2D: Adopt the user basic reinforcement as practical reinforcement: Yes

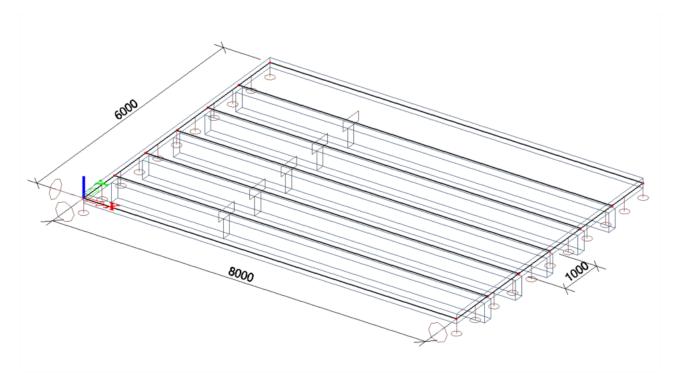
icia Engine	er 15.0.1019
?	Member Data on 2D Member specifying orthogonal type of reinforcement with non-zero basic-distance were found. Do you want to generate 2D reinforcement on the whole member automatically?
	Yes No

Adding additional reinforcement = on specific location(s) on the plate

*2D member > Reinforcement 2D: Where necessary, add extra reinforcement layers – the layout of the geometry can be chosen by the user

*2D member > Member design – Design – ULS; view for Class = All ULS the Reinforcement = User reinforcement/Additional reinforcement, with Value = As

c) Checks


*Concrete > 2D member > Member check – Design – Crack width: for Class = All ULS+SLS, Type values = Required areas/Maximal diameters/Maximal distances/Shear stresses Possible for both theoretical and practical reinforcement, see Concrete > 2D member > Setup > General > Calculation > For stiffness, allowable stress, punching and crack-proof calculation, use reinforcement

*Concrete > Punching > Punching check: for Class = All ULS Possible for both theoretical and practical reinforcement, see Concrete > 2D member > Setup > General > Calculation > For stiffness, allowable stress, punching and crack-proof calculation, use reinforcement

Example 15: Slab with ribs

1_Input of geometry

*Project data: General XYZ > necessary because of eccentricity of the ribs Concrete C20/25 – Plate thickness 200mm – Ribs R 200mm x 400mm

*Input plate + ribs (Method 1): Structure > 2D Member > Plate

New rectangle, via Command line toolbar

Structure > 2D Member > 2D member components > Rib	

Plate rib			×
	Name	B1	
	Type rib	plate rib (92)	
	Analysis model	Standard	*
	CrossSection	CS1 - Rectangle (400; 200)	×
	Shape of rib	T symmetric	•
	Effective width	width	•
	for int. forces [mm]	500	
	for check [mm]	500	
	FEM type	standard	•
	Buckling and relative lengths	Default	
	Layer	Layer1	×
		ОК	Cancel

Effective width = Default, Number of plate thickness, or Width in mm Default: see Setup > Solver > Number of thicknesses of plate rib

Graphical display of effective width (T-section ribs)

via Set view parameters for all 💷 > Structure > Draw cross-section

* Input plate + ribs (Method 2): Structure > 2D Member > Ribbed slab

*Input supports: hinged Structure > Model data > Support > Line on 2D member edge

2_Load cases

LC 1: Self weight LC 2: Service load (Var.) > Surface load 5 kN/m²

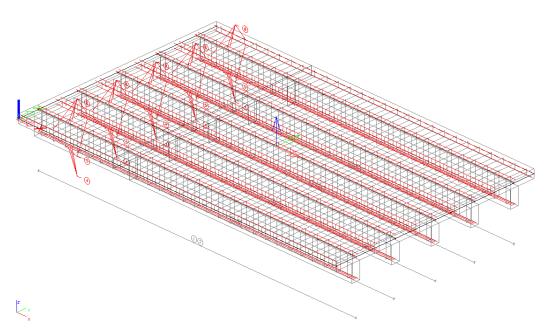
3_Finite elements mesh

Refine mesh via Main menu > Calculation, Mesh > Mesh setup; size of 2D mesh elements = 0,25m

4_Results

*Results > Beams > Internal forces on beam; Values = N Option Rib off: Results on the rectangular sections Option Rib on: Results on the T-sections

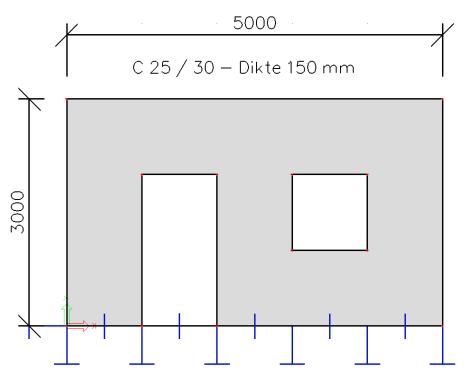
*Results > 2D members > Internal forces; Values = nx Option Rib off: Results on the entire plate Option Rib on: Results on the pieces of plate between the T-sections


5_Reinforcement in T-sections

The <u>effective width</u> is an approximation from the norm, where the connection beam-plate is replaced by a T-beam for the design of the reinforcement. By selecting the option Rib, the internal forces in the beam are adapted. These adapted forces represent the forces in the T-section, so they can be used to design the reinforcement in the T-beam.

Suppose: effective width = distance between the ribs

Define reinforcement:


Main menu > Concrete > 1D Member > Redes (without As) > New reinforcement

Example 16: Prefab wall

1_Input of geometry

*Project data: Wall XY – Project level Advanced

*Input wall Structure > 2D Member > Plate Structure > 2D Member > 2D member components > Opening

2_Load cases

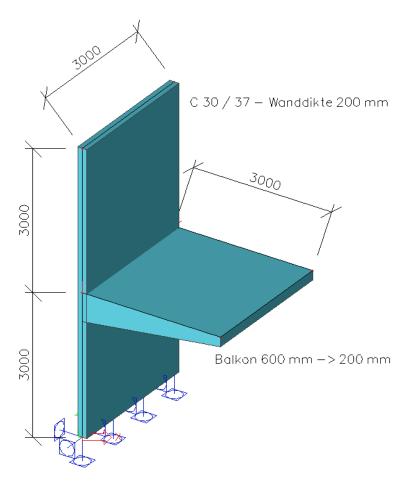
LC 1: Self weight LC 2: Prefab plates (Perm.) > Line force 13,2 kN/m

3_Finite Elements Mesh

*Global mesh = 0,3m

Set view parameters for all 🖳 > Structure > Mesh > Draw mesh

*Mesh refinement around the openings Main menu > Calculation, Mesh > Local mesh refinement > 2D member edge mesh refinement; Size = 0,1m


4_Results

Display the direction of the principal stresses as follows: Results > 2D Members > Stresses For LC 2: Type forces = Principal magnitudes, Values = sig1 or sig2, Drawing = Trajectories

Example 17: Balcony

1_Input of geometry

* Project data: General XYZ - Project level Advanced

*Input balcony Structure > 2D Member > Wall Structure > 2D Member > Plate; Thickness type = Variable, Member system plane at = Top

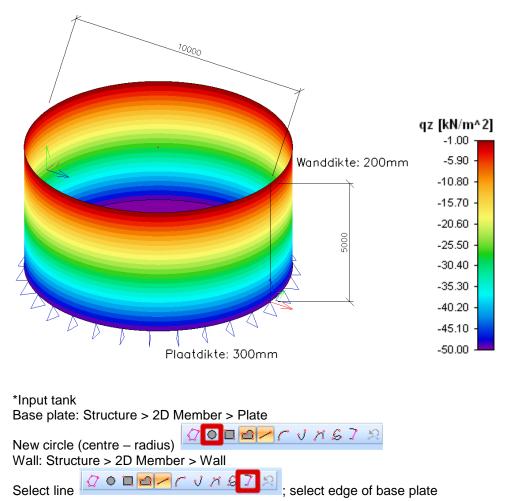
2_Actions after input

*Check structure data

*Connect members/nodes (Attention: connect the entire structure!) This action is necessary to connect 2D members to each other, see Annex 1

3_Load cases

LC 1: Balustrade (Perm.) > Line force 10 kN/m


4_Results

Check as follows if the structure is completely connected: Results > 2D Members > Displacement of nodes For LC 1: Structure = Initial, Values = Deformed mesh

Example 18: Tank

1_Input of geometry

*Project data: General XYZ - Project level Advanced

Display local axes of the 2D members, via Set view parameters for all > Structure > Local axes > Members 2D

*Input supports Main menu > Project > Functionality: Subsoil Structure > Model data > Support > Surface (elast. foundation)

2_Loads

*Load cases LC 1: Self weight LC 2: Varied pressure (Var.) > Surface load 0 to 50 kN/m²

*Free surface load Input of varied pressure as a free surface load

a)The geometry of a free load always has to be inputted in the XY plane of the current UCS > Define UCS at first, via 'Tools' toolbar , so the XY plane is vertical and e.g. the Y axis is pointing upwards Set Plane XY = Active working plane, see at the bottom of the Command line

b)Surface load > Free

-Surface load acts in the direction of the local z axis of the 2D members Direction = Z, System = Member LCS

-Linear variation of the load over the height

•		
-P Name	FF1	
Direction	Z	-
Туре	Force	·
Distribution	Dir Y	·
q1 [kN/m^2] 0,00	
P1		·
q2 [kN/m^2] -50,00	
P2		·
Validity	All	·
Select	Select	·
Geometr	1	
System	Member LCS	· ·
Location	Length	
Actions		
Generate loa	łs	>>>

Input the geometry of the free load as a New rectangle in the XY plane

After input: change positions P1 and P2 in the Properties menu if necessary; since these are dependent of the way of inputting the geometry

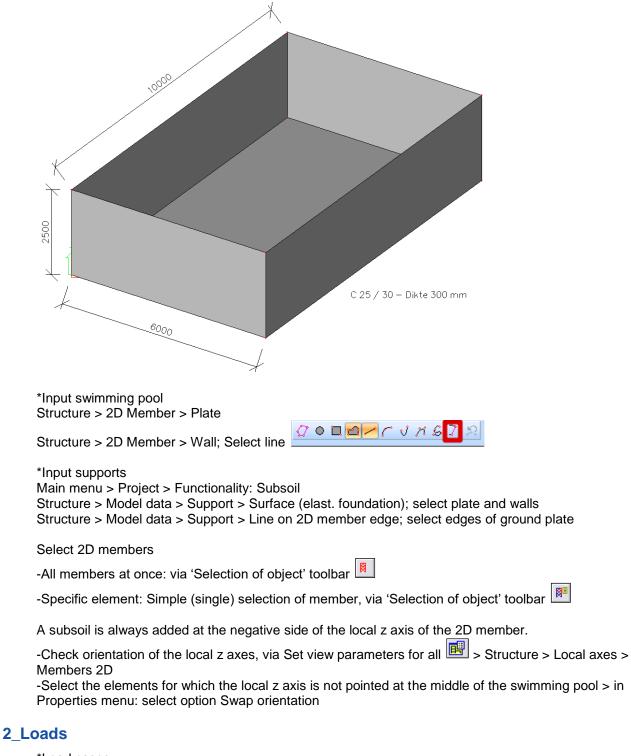
- Select yourself the members on which the free load has to act Select = Select Actions > Update 2D members selection > Select 2D members

See also Annex 4: Free loads

3_Finite Elements Mesh

Refine mesh; size of mesh elements = 0,2m

4_Check of input data


*Main menu > Calculation, Mesh > Calculation; Test of input data

*Main menu > Calculation, Mesh > 2D data viewer > Surface loads LC 1: Values = qz, System = Global LC 2: Values = qz, System = Local

Example 19: Swimming pool

1_Input of geometry

*Project data: General XYZ – Project level Advanced

*Load cases LC 1: Self weight LC 2: Water pressure (Var.) > Surface load 0 to 25 kN/m²

*Free surface load Input of water pressure as a free surface load a)The geometry of a free load always has to be inputted in the XY plane > Define UCS at first, via 'Tools' toolbar , so the XY plane is vertical and for instance the Y axis is pointing upwards Set Plane XY = Active working plane, see at the bottom of the Command line

b)Surface load > Free

-Surface load acts in the direction of the local z axis of the 2D members Direction = Z, System = Member LCS

-Linear variation of the load over the height Distribution = Direction Y

Name FF1 Direction Z Type Force Distribution Dir Y Image: Select Image: Select Image: Select Select Imag	Surface force free			
Actions		Direction Type Distribution q1 [kN/m^2] P1 q2 [kN/m^2] P2 Validity Select Geometry System	Z Force Dir Y 0,00 -25,00 All Select Member LCS	
				>>>

Input the geometry of the free load as a New rectangle in the XY plane

After input: change positions P1 and P2 in the Properties menu if necessary; since these are dependent of the way of inputting the geometry

-Select yourself the members on which the free load has to act Select = Select Actions > Update 2D members selection > Select 2D members

3_Finite elements mesh

Refine mesh; size of mesh elements = 0,3m

4_Check of input data

*Main menu > Calculation, Mesh > Calculation; Test of input data

*Main menu > Calculation, Mesh > 2D data viewer > Surface loads LC 1: Values = qz, System = Global LC 2: Values = qz, System = Local

5_Results

Section on wall: Results > 2D Members > Section on 2D member

Direction of cut = 1;0;0 (for section in X direction) or 0;1;0 (for section in Y direction) = 2^{nd} co-ordinate of a direction vector which defines the direction of the section (1^{st} co-ordinate is the origin)

Example 20: Cooling tower

1_Input of geometry

*Project data: General XYZ – Project level Advanced Concrete C30/37 – Shell thickness 200mm – Height of pillars 5m – Height of tower 35m Radius base plate 15m – Radius tower Bottom 13,5m / Top 9m – V-pillars CIRC (500)

*Input of base plate Structure > 2D Member > Plate; New circle with radius 15m

*Input of tower Structure > 2D Member > Shell – surface of revolution

Define line of revolution: New parabolic arc, see Command line toolbar イで	Rotation angle and axis
Start point13,5;0;5Intermediate point8;0;25End point9;0;40	C Working plane axis X Working plane axis Y Working plane axis Z Define axis by cursor Enter custom axis vector
	Custom axis vector x 0,000 m y 0,000 m z 0,000 m
	OK Cancel
*Input of 20 V-pillars	
Cursor snap settings 🔀 > S Structure > 1D Member > Be	elect option h ^{h)}
Multicopy, via 'Geometry mai	nipulations' toolbar 📴

	of copies 20	÷	Connect selected nodes with new beams	
Insert	the very last copy		Copy additional data	\checkmark
Distance	vector		How to define the distance ?	
Define di	stance by cursor		between two copies	
x	0,000	m	C from original to the last	сору
у	0,000	m	- How to define the rotation ?	
z	0,000	m	 between two copies from original to the last 	CODY
Rotation			- Rotation around	сору
rx	0,00	deg	current UCS	
ry	0,00	deg	O distance vector	

*Input of support Structure > Model data > Support > Line on 2D member edge

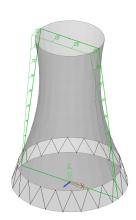
2_Actions after input

*Check structure data ¹¹ *Connect members/nodes ¹² (Attention: connect the entire structure!)

3_Loads

*Load cases LC 1: Self weight LC 2: Temperature load (Var.) > Thermal on 2D member, Delta = 40 K LC 3: Wind load (Var.) > Surface load 0 to 1,4 kN/m²

*Load groups LG 1: Permanent LG 2: Variable, EC1 Load type = Temperature LG 3: Variable, EC1 Load type = Wind


*Free surface load Input of wind load as a free surface load

a)The geometry of a free load always has to be inputted in the XY plane > Define UCS at first, via 'Tools' toolbar , so the XY plane is vertical and for instance the Y axis is pointing upwards Set Plane XY = Active working plane, see at the bottom of the Command line

b)Surface load > Free
 Surface load acts in the direction of the Y axis of the GCS
 Direction = Y, System = GCS

-Linear variation of the load over the height Distribution = Direction Y

	Name	FF1	
	Direction	Y	-
	Туре	Force	
	Distribution	Dir Y	*
	q1 [kN/m^2]	0,00	
	P1		×
	q2 [kN/m^2]	1,40	
ALL VI	P2		×
	Validity	+Z	*
	Select	Select	· ·
	Geometry		
	System	GCS	*
	Location	Projection	*
Junio	Actions		
\mathbf{A}	Generate loads		>>>

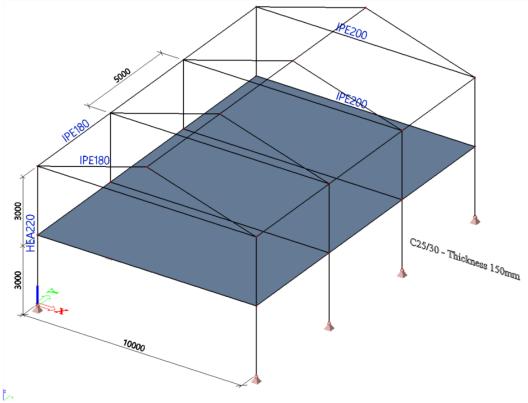
Input the geometry of the free load as a New polygon in the XY plane

-Select yourself the members on which the free load has to act Select = Select Actions > Update 2D members selection > Select 2D members

-Only one side of the cooling tower is loaded by the wind Validity = +Z

-Location = Projection

4_Check of applied loads


*Main menu > Calculation, Mesh > Calculation; Test of input data Main menu > Calculation, Mesh > 2D data viewer > Surface loads LC 1: Values = qz, System = Global LC 3: Values = qy, System = Global

*Main menu > Calculation, Mesh > Calculation; Linear calculation Main menu > Calculation, Mesh > 2D data viewer > Temperature load LC 2: Values = epsilon

Example 21: Steel hall with concrete plate

1_Input of geometry

*Project data: General XYZ – Project level Advanced – Concrete & Steel *H2 = 1,5m

*Input hall

-First frame, via Structure > Advanced input > Catalogue blocks; choose Frame 2D

-Multicopy, via 'Geometry manipulations' toolbar 📴 > Automatic generation of connecting bars from the selected nodes

*Input slab

Structure > 2D Member > Plate

-New rectangle: only possible to input this geometry in the Active working plane

Move GCS at first to the first story, via 'Tools' toolbar $\textcircled{1}{120}$ + Set Plane XY = Active working plane -New polygon: input of this geometry is independent of the Active working plane Input of the geometry line by line

2_Connections between entities

*Connection of the whole structure

Connect members/nodes, via 'Geometry manipulations' toolbar

*Connection beam - plate

Concerning a beam which does not coincide with the edge of a plate, the connection beam – plate has to be created manually by means of an internal edge. See also Annex 1 Structure > 2D Member > 2D Member components > Internal edge

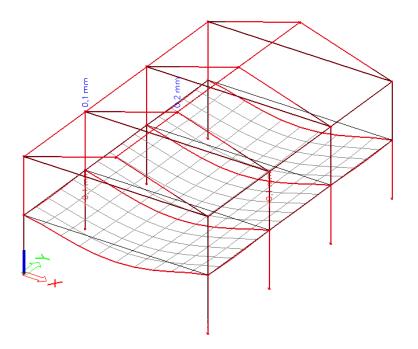
REMARK: When a beam has been inputted as a plate rib, it is by default connected rigidly to the plate. The use of an internal edge is in that case superfluous, see also Ex. 15

3_Load cases

LC 1: Self weight LC 2: Service load (Var.) > Surface load 2 kN/m²

4_Check connections

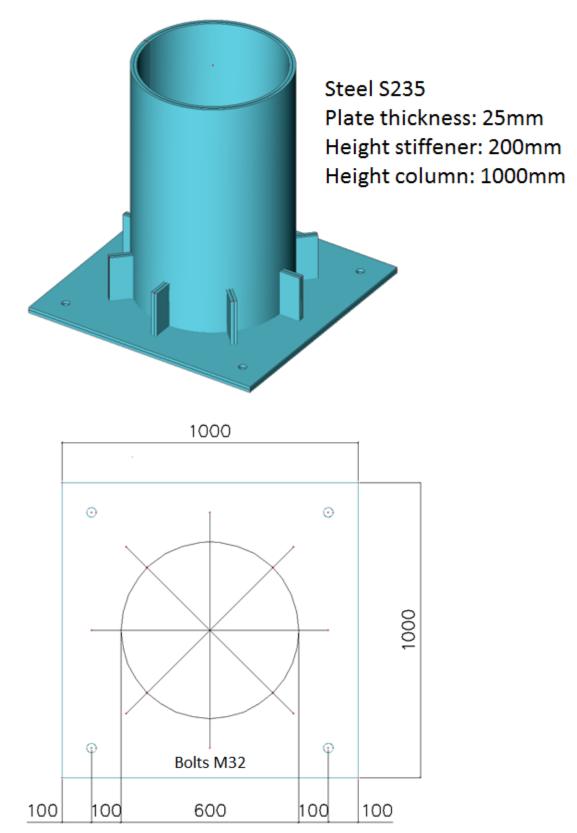
After calculation, check as follows if the construction has been completely connected:


*Compare deformation Uz of beams & plate -Results > Beams > Deformations on beam -Results > 2D Members > Displacement of nodes Make sections on the plate at the connections with the beams: Results > 2D Members > Section on 2D member

*Check the deformed mesh

Results > 2D Members > Displacement of nodes

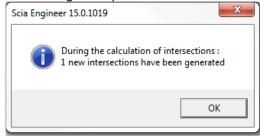
Choose a Load case: Structure = Initial, Values = Deformed mesh


The beams are displayed in red, check if they deform along with the mesh of the plate.

Example 22: Detailed study of a column base

1_Input of geometry

*Project data: General XYZ - Project level Advanced



*Input column base

Base plate: Structure > 2D Member > Plate

Column: Structure > 2D Member > Wall; New circle (centre – radius) with midpoint (0,5;0,5) and point at circle (@0,3;0)

Connect members/nodes is Intersection column – base plate is generated automatically, an internal edge is superfluous

*Input bolt holes

Margin is neglected > diameter of the bolt holes = 32mm

-Input by means of a Line grid, see 'Tools' toolbar $rac{ ext{III}}{ ext{III}}$

Snap to the dots of the Line grid by means of Cursor snap settings, see Command line toolbar 🔀 or via right mouse click in screen

-First bolt hole, via Structure > 2D Member > 2D member components > Opening; New circle (centre – radius) with point at circle (@0,016;0)

-Copy bolt holes, via 'Geometry manipulations' toolbar

*Input stiffeners

-First fin: Structure > 2D Member > Wall; input of fin on line grid or at random position

-Move fin, via 'Geometry manipulations' toolbar¹; Start point = midpoint of bottom side of fin, End point = midpoint of column

-Multicopy, via 'Geometry manipulations' toolbar

Attention: Rotation around current UCS > Move UCS beforehand to the midpoint of the circle, via 'Tools' toolbar

Multicopy				x
	of copies 3 the very last cop	÷	Connect selected nodes with new beams Copy additional data	
Distance Define di	vector istance by cursor		How to define the distance ?	
x	0,000	m	C from original to the last cop How to define the rotation ?	у
y z	0,000	m m	 between two copies from original to the last copies 	у
- Rotation			-Rotation around	
rx	0,00	deg	current UCS	
ry	0,00	deg	C distance vector	
rz	45	deg	OK Cancel	

Connect members/nodes 🐸 > Intersections are generated automatically, an internal edge is superfluous

-Remove the part of the stiffeners at the inside of the column Structure > 2D Member > 2D Member components > Cut-out *Input supports Main menu > Project > Functionality: Subsoil Structure > Model data > Support Base plate: Surface (elas. foundation); Default subsoil Subsoil 1 Bolt holes: Line on 2D member edge; all translations fixed

2_Actions after input

*Check structure data

*Connect members/nodes 🖆 (Attention: connect the entire structure!)

3_Loads

- *Load cases
- LC 1: Self weight

LC 2: Normal force: -60 kN/m at the top edge of the column

LC 3: Moment: 20 kNm/m at the top edge of the column in the Y direction (lever arm = height of column = 1m)

*Load combinations Linear - ULS: 1,00.LC 1 + 1,00.LC 2 + 1,00.LC 3

3 Finite elements mesh

*Global mesh refinement Main menu > Calculation, Mesh > Mesh setup; size of the mesh elements = 0,025m

*Local mesh refinement around the bolt holes Main menu > Calculation, Mesh > Local mesh refinement > Node mesh refinement; around midpoint of bolt holes, Radius = 0,050m en Ratio = 0,01

*Mesh generation

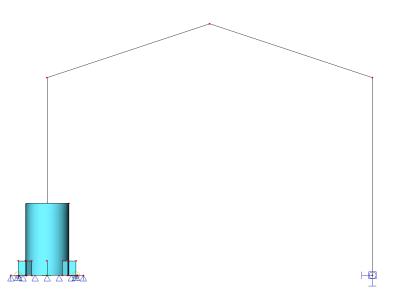
Main menu > Calculation, Mesh > Mesh generation, or 'Project' toolbar

Graphical display: Set view parameters for all 🖳 > Structure > Mesh > Draw mesh Verify that the inner parts of the stiffeners will not be taken into account for the calculation: no mesh is being generated on these parts

The elastic mesh in the mesh setup provides a fluent transition between mesh sizes.

4 Results

Results > 2D Members > Displacement of nodes Choose a Load case: Structure = Initial, Values = Deformed mesh Check if the structure is entirely connected


Results > 2D Members > Stresses Look at the concentration of stresses around bolt holes and stiffeners

5_Link 2D (detail column base) – 1D (entire structure)

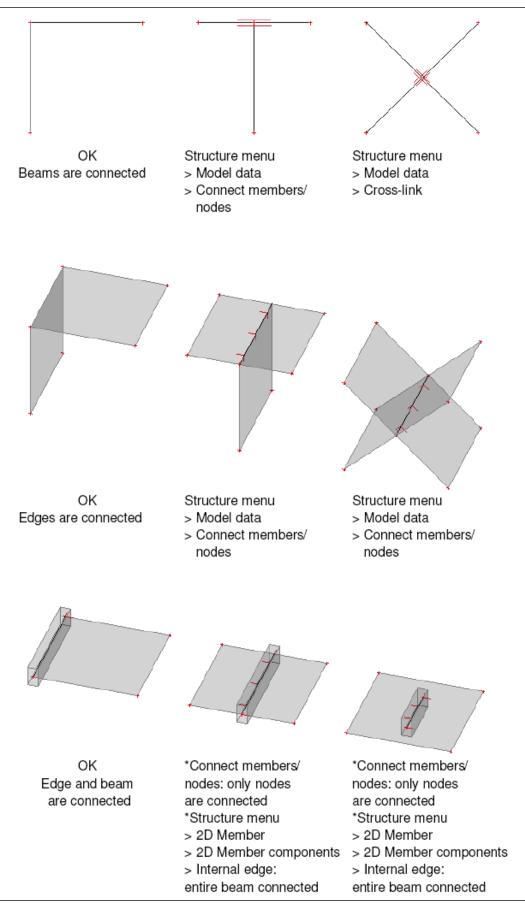
*Structure > 1D Member > Column; Add a 1D column with the same properties as the 2D column, insertion point = 0,5;0,5;1

*Transfer of the internal forces from the 1D structure to the 2D column base: Structure > Model data > Line rigid arms; master node = insertion point of 1D column, slave edge = top edge of 2D column

A rigid arm is a very stiff 1D member which transfers all displacements from 1 master node to one or more other nodes, or to a (2D member) edge, without any change in the values of the displacements.

6_Extra

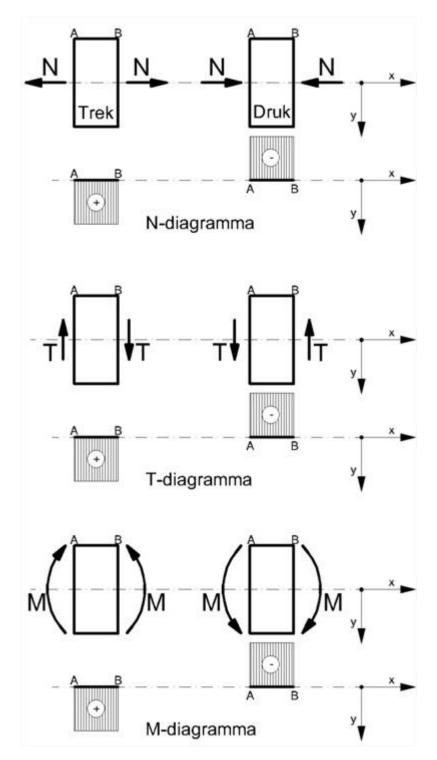
For advanced calculations, this analysis model can be expanded further on by means of e.g.

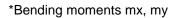

- -Horizontal pressure only supports at the bolt holes
- -Taking into account the tolerance of the bolt holes -Stiffness parameters subsoil -Pressure only subsoil

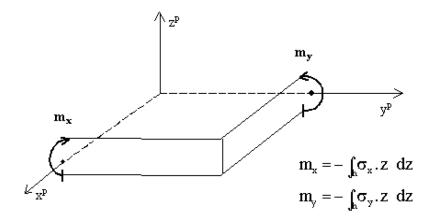
- -Bevelling the stiffeners

-...

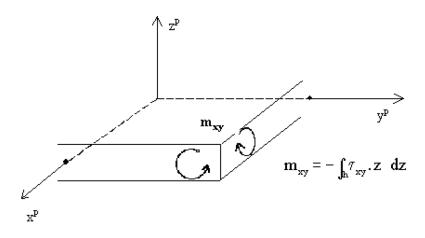
Annexes



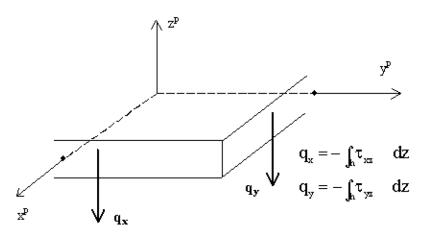

Annex 2: Conventions for the results on 2D members

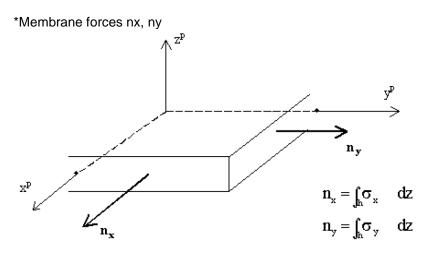

1_ Basic magnitudes = Characteristic values

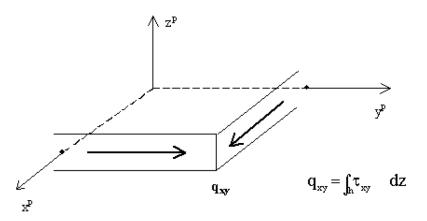
Beams 1D



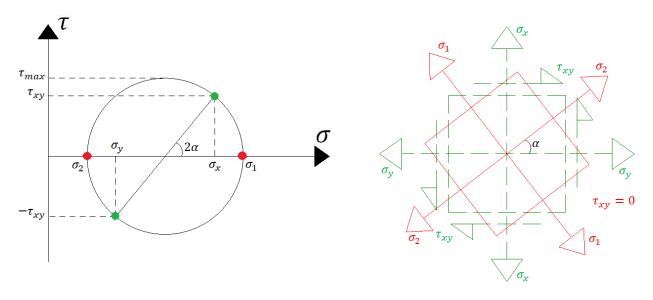
Bending (plates, shells)




*Torsion moment mxy

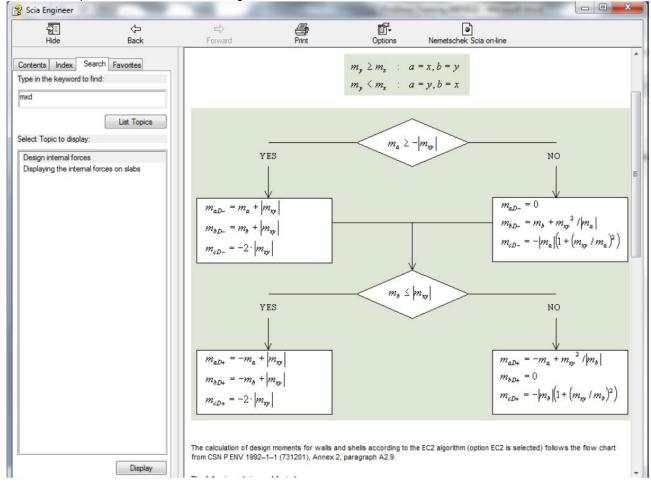

*Shear forces qx, qy (=vx, vy)

Membrane effects (walls, shells)



*Shear force qxy (=nxy)

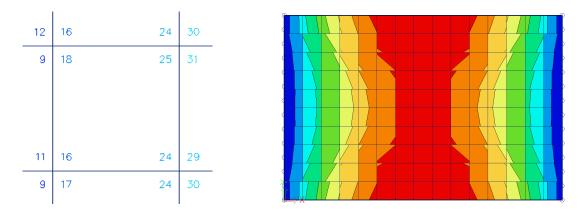
2_Principal magnitudes


The principal magnitudes give the results according to the axes of the directions of the largest stresses (principal directions). These directions are defined with the help of the Mohr's circle.

3_Dimensional magnitudes = Design values

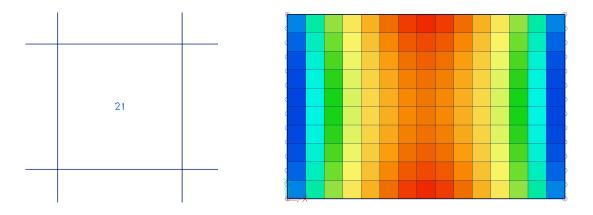
To derive the dimensional magnitudes from the basic magnitudes, formulas from the Eurocode are used.

Annex 3: Results in mesh elements and mesh nodes \rightarrow 4 Locations


During a calculation in SCIA Engineer, the node deformations and the reactions are calculated exactly (by means of the displacement method). The stresses and internal forces are derived from these magnitudes by means of the assumed basic functions, and are therefore in the Finite Elements Method always less accurate.

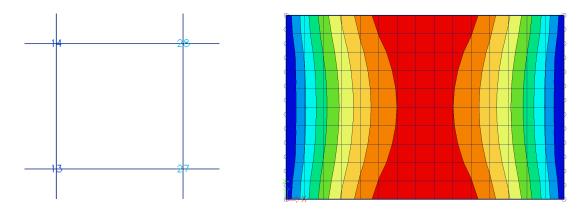
The Finite Elements Mesh in SCIA Engineer exists of linear 3- and/or 4-angular elements. Per mesh element 3 or 4 results are calculated, one in each node. When asking the results on 2D members, the option 'Location' in the Properties window gives the possibility to display these results in 4 ways.

1_ In nodes, no average

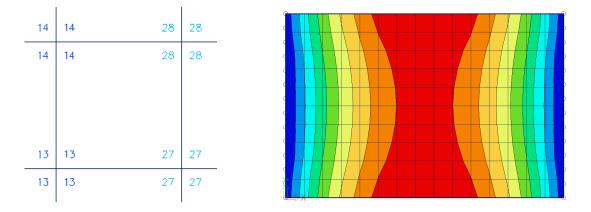

All of the values of the results are taken into account, there is no averaging. In each node are therefore the 4 values of the adjacent mesh elements shown. If these 4 results differ a lot from each other, it is an indication that the chosen mesh size is too large.

This display of results therefore gives a good idea of the discretisation error in the calculation model.

2_ In centres


Per finite element, the mean value of the results in the nodes of that element is calculated. Since there is only 1 result per element, the display of isobands becomes a mosaic. The course over a section is a curve with a constant step per mesh element.

3_ In nodes, average


The values of the results of adjacent finite elements are averaged in the common node. Because of this, the graphical display is a smooth course of isobands.

In certain cases, it is not permissible to average the values of the results in the common node: - At the transition between 2D members (plates, walls, shells) with different local axes. - If a result is really discontinuous, like the shear force at the place of a line support in a plate. The peaks will disappear completely by the averaging of positive and negative shear forces.

4_ In nodes, average on macro

The values of the results are averaged per node *only* over mesh elements which belong to the same 2D member and which have the same directions of their local axes. This resolves the problems mentioned at the option 'In nodes, average'.

Accuracy of the results

If the results according to the 4 locations differ a lot, then the results are inaccurate and the mesh has to be refined. A basic rule for a good size of the mesh elements, is to take 1 to 2 times the thickness of the plate.

Annex 4: Free loads

Definition

A free load differs from a 'regular load' by the fact that it is NOT attributed as an additional data to a specific 2D member. A free load can be created at an arbitrary position in space, and afterwards the user can specify to which element(s) the projection of this load is attributed to.

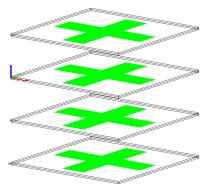
<u>Attention</u>: The geometry of a free load always has to be inputted in the XY plane of the current UCS. It is thus necessary to adapt the UCS in advance, and to assign the XY plane as the Active working plane.

A free load *can* load all elements which are cut by the projection of the free load. Which elements will be actually loaded by the free load, depends on the parameters <u>Select</u>: Auto(matically), Select; and <u>Validity</u>: All, -Z, Z=0, +Z, From-to.

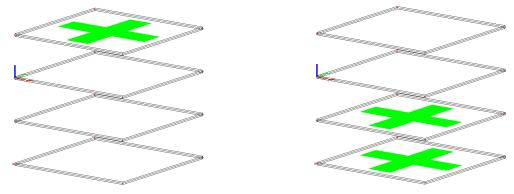
Validity = -Z means: Only the elements situated *under* the free load (situated in the half-space defined by the negative Z direction of the UCS at input), can be loaded.

Validity = +Z means: Only the elements situated *above* the free load (situated in the half-space defined by the positive Z direction of the UCS at input), can be loaded.

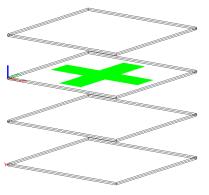
Example

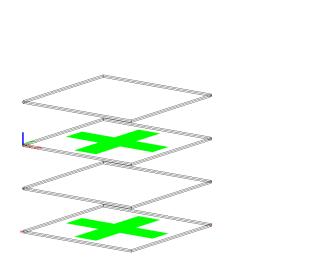

An apartment building, where it is likely that the same load configuration acts on more than one storey floor.

Let's suppose: Four plates situated right above each other, and a free surface load inputted exactly IN the plane of the 3rd plate.


urface force free				
_P	Name	FF1		
-P	Direction	Z	·	
	Туре	Force		
	Distribution	Uniform		
	q [kN/m^2]	-1,00		
	Validity	All	-	
Thursday	Select	Auto	· ·	
the with	Geometry			
	> System	GCS	-	
	Location	Length	-	No.
Y				
There	Actions			
	Generate loads		>>>	
			OK Cancel	
				R.

Main menu > Calculation, Mesh > Calculation; choose 'Test of input data' Main menu > Calculation, Mesh > 2D data viewer > Surface loads


1) Select = Auto, Validity = All


2) Select = Auto, Validity = +Z Validity = -Z (Attention: The free surface load is placed exactly IN the plane of the 3rd plate.)

Select = Auto, Validity = Z=0
 (Attention: The free surface load is placed exactly IN the plane of the 3rd plate.)

4) Select = Select, Validity = All Actions > Update 2D members selection > Select the 1st and 3rd plate Result: The load only acts on the manually selected plates.

plates.		
Properties		Ψ×
Surface force free	(1)	🔁 Va V/ 🖉
		6 🙈
Name	FF1	
Direction	Z	*
Туре	Force	· ·
Distribution	Uniform	*
q [kN/m^2]	-1,00	
Validity	All	*
Select	Select	· ·
Load case	LC3 - Service load	×
Geometry		
System	GCS	·
Location	Length	· ·
Actions		
Generate loads		>>>
Update 2D membe	ers selection	>>>
Move UCS		>>>
Edit plane load geometry >>>		
Table edit geomet	ry	>>>

Attention when Select is put to Select, and Validity to e.g. +Z or -Z !

Annex 5: Overview of the icons in windows & toolbars

1_Main window

In the Main window one can find the links to the most used menus and actions. Some of those links are only activated when they can be effectively used in the project: e.g. the link to the Results menu is only shown after a calculation has been performed, and the Steel and/or Concrete menus are visible depending on the materials applied in the project.

Main ×
Project
Line grid and storeys
BIM toolbox
Structure
🗄 📲 Load cases, Combinations
🗄 🖷 Design groups
🗄 📲 Calculation, mesh
Concrete
Concrete 15
Engineering report
🗄 🕍 Drawing Tools
in tibraries
tools

2_Properties window

The Properties window gives information about selected objects and/or actions. Moreover it is possible to adjust the properties of each object directly via this menu. When several kinds of objects or actions are selected at the same time, it is possible to switch between their properties by means of the little arrow behind the object name. The number between brackets behind the object name represents the number of objects of this kind that is selected at this moment. If the number is larger than 1, only the corresponding properties are shown.

Properties				>
Member (1)		- 71	7/	Ø
A			8	*
Name	S1			*
Туре	column (100)			
Analysis model	Standard			
CrossSection	CS1 - HEA200		×	
Alpha	0			. 1
Member system-line at	Centre			
ez [mm]	0			
LCS	standard			
FEM type	standard			
Buckling and relative lengths	Default		×	
Layer	Layer1		·	
Geometry				
Length [m]	4,000			-
Actions				
Buckling data			>>	>
Graphical input of system length		>>	>	
Table edit geometry			>>	>>

Select elements by more properties

Select elements by property

3_Menu bar

🗒 File Edit View Libraries Tools Modify Tree Plugins Setup Window Help

These 'written' menus group all actions by subject. A large number of these actions is also available in the Main menu and/or as icon in the toolbars.

4_Standard toolbars

Activity 👻 🗙
$\blacksquare \blacksquare $
The 'Activity' toolbar provides options for the visibility / invisibility of specific parts of the structure, which increase the ease of working and the readability of the project.
Activity toggle
Activity by layers
Activity by selection (Selected members On)
Activity by selection (Selected members Off)
Activity by working plane
Activity by clipping box
Activity by storey
Move activity by storey up
Move activity by storey down
Invert current activity

Draw inactive members

Basic	•	×
🗋 🚔 🔚 💁 🗠 💽 Esal		•

The 'Basic' toolbar contains a number of primary actions with regard to the current project and allows to modify the basic settings of the program (Setup Options).

D New (Ctrl+N)	
Dpen (Ctrl+O)	
Save (Ctrl+S)	
🔊 Undo	
Redo	
Setup	
Esa1 •	Name of the opened *.esa file

View		▼ ×
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	🖕  ቢ  ቢ  ቢ  ቢ  😭	' 🤉   🗑 🛗   📴 🕖

The 'View' toolbar allows for the execution of a whole lot of simple view manipulations.

View in direction X 🐌 View in direction Y View in direction Z View in direction AXO ط View perpendicular to working plane 🔍 Zoom in 2 Zoom out ୍ୟ Zoom by cut out Coom all R Zoom selection Perspective view 🖻 Undo view change 🛅 Redo view change C Generate structural model Ø Regenerate view

Geometry manipulations	▼ >	×
i li Xi bli Ci 8°0 an da da da da da	1 [ 사 뒤 米 芇 ! 理 尸 攵 ! ㅎ>  ! 끓 끓 배 前 幣 히	2

In the 'Geometry manipulations' toolbar one can find manipulations with basic entities (nodes, 1D members, 2D members), as well as with additional data.

- 👖 Move 0+0 Сору 💼 Multicopy 0.2 Rotate 01:2 Scale Stretch Mirror ťЖ Trim tl Extend 🛅 Enlarge by defined length ¦¥ Break in defined points <mark>문</mark> Join Heak in intersections **,**⇔ Reverse orientation **₽** Polyline edit -Curves edit <del>(</del> Calculate member end-cuts ġ\$ Divide surface by curve **0**0
- Merges more surfaces into one

Connect members/nodes
Disconnect linked nodes
Copy additional data

Move additional data

Copy attributes

Move attributes

Modelling Tools	×
🔐 🗳 👰 👰 🐡 🛒 (	÷

The 'Modelling tools' toolbar provides for manipulations with general solids.

Union of solids
 Subtraction of solids
 Intersection of solids
 Division of solids
 Generate vertexes
 Clash check of solids
 Move vertexes/points

Project				•	×
rr 🥩 💋 Ij f	🛛 🛱 🖗	🖾   🎒 (	fi 🔟 🖬		

The 'Project' toolbar collects various actions, from the definition of databases (layers, materials, crosssections) for the project, to several options for the output.



The 'Selection of object' toolbar contains different possibilities to select a specific part of the structure. A selection can also be saved and loaded again later on.

<b>8</b> 0	Selection by mouse
	Selection by cut out
<b>₿</b> ‡	Selection by intersecting line
	Selection by polygonal cut out
₿	Select all
<b>₿</b> 4,	Selection by working plane
8	Previous selection
*	Cancel selection
₿+	Selection mode toggle (Select or Deselect)
₿	Single selection mode toggle (All found or First found)
¢	Visibility selection mode
	Save selection
	Load selection
67	Filter for selection on/off
Þ	Filter by service tree on/off
	-

 Tools
 ▼ ×

 L
 III

In the 'Tools' toolbar a number of clever means can be found for the input and graphical display of a structure.

论 Setup UCS

Clipping box

Dot grid setting

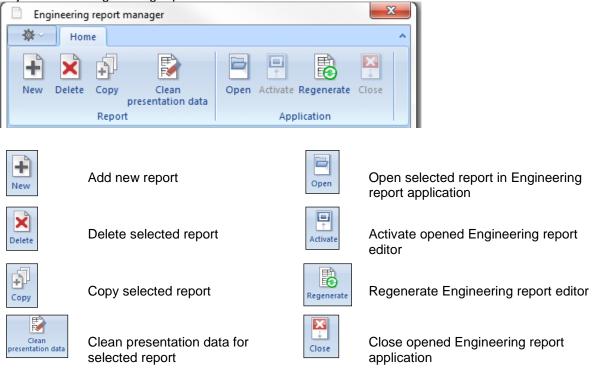
Coordinates info

### **5_Command line toolbars**

On the Command line itself, a number of commands for the operation of the program can be inputted. Also, during running actions, instructions on the next steps are shown.

Apart from that, quite a number of toolbars can be found here; some of them are only available during a certain action or in a specific menu.

0 0 🕹 🔤 🚝 🦉 🦉 🍓 🖬 📰 🗮 💶	
Command line	4 ×
	NNGXIAFVIWHITKNXなど
Command >	


Show/Hide surfacesRender geometry

Show/Hide supports

Show/Hide loads
Show/Hide other model data
Show/Hide labels of nodes
Show/Hide labels of members
Show/Hide dot grid
Set load case for display
Fast adjustment of view parameters on whole model
Fast adjustment of view parameters on selection
Cursor snap settings
Ⅲ 木 木 ☆ が は が 甚 恒 Fast adjustment of cursor snap settings
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
Or O □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
🛎 🕿 🕇 🖡 🛱 🛱 Fast input of supports & hinges, available in Structure menu
Fast input of loads, available in Load menu
🚬 💯 👑 🖑 🐔 🕈 🚡 Fast display of results, available in Results menu
M Adjust Units of length Plane XY Change Active working plane Snap mode Adjust Cursor snap settings
Current UCS Adjust UCS (=User Co-ordinates System)
Change Active code

# 6_Engineering report manager window

In the engineering report manager you can find an overview of all your engineering reports of the project. These Engineering reports can be accessed via this window.



# 7_Engineering report home toolbar

Pas

ж Ъс

¢

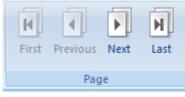
Ed

Dele



The Home toolbar contains manipulation tools to edit your Engineering report.

ste ▼	Paste items from clipboard	Outdent	Report item outdent
Cut Copy	Cut/Copy items to clipboard	Regenerate selected	Regenerate selected report items
Jndo Redo	Undo/Redo an action	Regenerate outdated ~	Regenerate all report items with outdated validity status
port peties	Show Engineering report properties	Edit picture properties	Edit picture properties
ert	Insert new Engineering report item	View point	Edit picture view point
dit	Edit selected report item	Edit	Edit picture in graphic editor
lete	Delete report item	View parameters	Show view parameters in editor




8_Engineering report View toolbar

The view of the Engineering report can be zoomed by using the following buttons

+	++	ŀ	+		<b>_</b> +	+
Fit to Window	Page width	25%	50%	100%	200%	300%
			Zoom			

Moving through pages can be done by using the page buttons.



The following buttons are applied to influence the Engineering report.



Fast preview of rendered pictures



Rendering of pictures using software emulation of OpenGL

Fast table

Fast table preview



Show/hide properties, navigator, tasks.



in tables

Draw graphs in tables

## 9_Table input toolbar

When you right click on the top inputbar you can see the different functionalities.

Table input					
	Clear		12 1/2 11		
	Search	m]	Coord Z 🔺	Member	2D
Structure Su	Cubathata	,000	0,000	B1; B36	
	Substitute	,000	0,000	B4; B34	
	+	,000	0,000	B5; B33	
Load - Libraries /		,000	0,000	B6; B35	
	-	,000	0,000	B9	
	x	,000	0,000	B10	
	1	,000	0,000	B13; B	
	·	,000	0,000	B14; B	
	Offset for Copy members	.000	0,000	B17; B	
	10 N25 0,000	20,000	0,000	B18; B	

- Clear: Clears the top inputbar.
- Search: Performs a search for a certain element.
- +, -, x, /: These can be used to perform mathematical actions on a selection.
- Offset for Copy members: Performs a multicopy of elements.

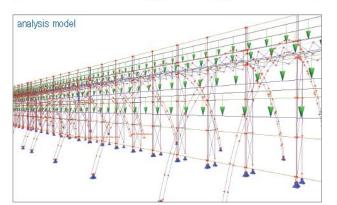


# Annex 6: Introduction to openBIM

Open BIM is a universal approach to collaborative design, realization and operation of buildings based on open standards and workflows. This means that Open BIM and even BIM in general are all about processes and not about software. Still, we need software to enable BIM. 3D modelling and adding information to these 3D models require dedicated software.

As far as the engineering market is concerned, the Nemetschek group offers several high performance solutions. One of them is **SCIA Engineer**.

Whereas for CAD software the additional data in a BIM model is often equally important as the geometrical data, the CAE model can do with far less. A general CAE model is built up out of centre lines (1D), mid planes (2D), cross sections, code compliant materials, supports... No need for textures, catalogue-ID's, unit prices...


SCIA Engineer, however, is unique in its kind as if offers you two (parallel) models in the same project. On the one hand, you have the analy-sis model dealing with all the information which is related to the analysis. On the other hand, you have the structural model at your disposal, which is dealing with all geometrical relations in the model.

CAD models primarily focus on the geometry. When importing them into a CAE software, there is little interest in irrelevant additional data. And when it comes down to importing or exporting the geometry, the **IFC format** is the best way to go.

All imported IFC models can be converted into the analysis models and fine-tuned for structural analysis purposes. We call this process **Structure2Analysis**. SCIA Engineer is packed with features which guide you through the whole conversion and make it a piece of cake. The structural model, however, remains as it is, allowing you to export it with or without changes.

Separate service called BIM Toolbox consists of all necessary functions for model conversion, align and clash check.







As IFC does not yet support analysis models, we have a number of proprietary links at your disposal.

- ETABS
- Steel Detailing Neutral File (SDNF)
- Prosteel
- STEPSTEEL
- DSTV
- general XML

Next to this we also link directly to some CAD-oriented software programs which have the analysis model.

- Allplan Engineering
- Tekla Structures
- Revit Structure